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ABSTRACT

The importance of utilizing multisource data in ground-cover classifica-

tion lies in the fact that improvements in classification accuracy can be achieved

at the expense of additional independent features provided by separate

sensors. However, it should be recognized that information and knowledge

from most available data sources in the real world are neither certain nor

complete. We refer to such a body of uncertain, incomplete, and sometimes

inconsistent information as "evidential information."

The objective of this research is to develop a mathematical framework

within which various applications can be made with multisource data in remote

sensing and geographic information systems. The methodology described in

this report has evolved from "evidential reasoning," where each data source is

considered as providing a body of evidence with a certain degree of belief. The

degrees of belief based on the body of evidence are represented by "interval-

valued (IV) probabilities" rather than by conventional point-valued probabilities

so that uncertainty can be embedded in the measures.

There are three fundamental problems in the multisource data analysis

based on IV probabilities: (1) how to represent bodies of evidence by IV

probabilities, (2) how to combine IV probabilities to give an overall assessment

of the combined body of evidence, and (3) how to make a decision when the

statistical evidence is given by IV probabilities.

This report first introduces an axiomatic approach to IV probabilities,

where the IV probability is defined by a pair of set-theoretic functions which

satisfy some pre-specified axioms. On the basis of this approach the report

focuses on representation of statistical evidence by IV probabilities and

combination of multiple bodies of evidence.

Although IV probabilities provide an innovative means for the

representation and combination of evidential information, they make the

decision process rather complicated. It entails more intelligent strategies for
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making decisions. This report also focuses on the development of decision

rules over IV probabilities from the viewpoint of statistical pattern recognition.

The proposed method, so called "evidential reasoning" method, is

applied to the ground-cover classification of a multisource data set consisting of

Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and

digital terrain data such as elevation, slope, and aspect. By treating the data

sources separately, the method is able to capture both parametric and

nonparametric information and to combine them.

Then the method is applied to two separate cases of classifying multi-

band data obtained by a single sensor. In each case, a set of multiple sources

is obtained by dividing the dimensionally huge data into smaller and more

manageable pieces based on the global statistical correlation information. By a

Divide-and-Combine process, the method is able to utilize more features than
the conventional Maximum Likelihood method.



CHAPTER 1

INTRODUCTION

1.1. Background

Since the developments of the digital computer and sensor systems

made it possible to apply the quantitative approach to remote sensing in 1960s,

information concerning the surface of the Earth and its environment has been

largely extracted from the multispectral data obtained by a single sensor.

Within the last decade, as remote sensing and other data acquisition

technologies have advanced, there has been a trend towards exploiting

remotely sensed multispectral data in conjunction with related data from other

sources for the purpose of extracting higher level information from multi-attribute

data bases. For instance, the topographic information obtained from digital

terrain data has been successfully used together with remotely sensed data in

land cover analysis [Fleming et al. (1979), Franklin et al. (1986), Jones et al.

(1988), Strahler et al. (1978)]. More recently, many researchers in the

geographic information processing community have started reconsidering the

possibility of utilizing remotely sensed data within geographic information

systems (GIS) [Healey et al. (1988), Quarmby et al. (1988)]. Figure 1.1 depicts a

typical multi-attribute database in remote sensing and GIS. In general, the

information obtained from multiple sources is robust and more reliable than that

from a single source. Furthermore, it may resolve ambiguities which might arise

from single source analysis.

To a large extent, the methods which have been used for the analysis of

multisource data have been ad hoc or often based on qualitative interpretation

techniques, drawing heavily on the expertise and intuition of application

scientists. Whereas techniques for collecting and storing data from multiple

sources (e.g., multispectral scanner, side-looking radar, digital terrain model,
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etc.) have evolved rapidly, techniques for extracting and analyzing information

from such complex data bases are still in the beginning stage. With the

advancement in designing sensor systems and the increasing availability of

ancillary data, interest in extracting the great wealth of higher level information

contained in geographic and remote sensing contexts has led to extensive

demand for computer-based, automated (or semi-automated) methods for the

analysis of multisource data. Their development will be hastened more and

more by proliferation of various and sophisticated remote sensing platforms and
sensors in the next decades.

Unlike the situation in which we are dealing with purely spectral data

from a single sensor, there are some conceivable problems in devising means

for multisensor and multisource data analysis. Firstly, there is a difficulty in

describing the disparate range of data types which have different units of

measurement. The types of data to be combined cannot be assumed to be

commensurable. For example, multispectral data represent the energy

emanating from the scene of interest in different wavelengths while elevation

data represent the altitude of the scene. Moreover, map-based ancillary data

such as a soil map may even be nominal in nature. The situation becomes

more complicated when the multi-attribute data bases include geometric

characteristics such as lines, shapes, or sizes.

Secondly, since spatial variation of the attribute in a geographic context,

such as vegetation cover, soil type, or slope aspect, has an effect on the

spectral responses obtained from remote sensors, there are possibly significant
but unknown interactions among multiple data sources. For example, in the

visible/infrared spectral range the reflected energy measured by a sensor
depends on properties such as the pigmentation, moisture content and cellular

structure of vegetation, the mineral and moisture contents of soils, and the level

of sedimentation of water. However, when there is insufficient knowledge

concerning the interactions among data sources, the observations obtained

from the data sources have been treated as independent variables. Such an

independence assumption should be adopted with caution in the case of a

statistical multisource data analysis because the data sources which seem to be

apparently uninteracting are unlikely to be statistically independent.

Thirdly, while it is often reasonable to adopt the multivariate Gaussian
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distribution to model the probability function of multispectral data alone, this

parametric model is not generally applicable to accommodate geographic or
topographic data combined with multispectral data when the representation of
their joint probability function is unknown.

Finally, there is an important factor which must be considered in

combining multiple sources. Since various data sources are in general not

equally reliable, the data sources usually provide a wide range of degrees of
support for an observation, sometimes even in an inconsistent manner. Such

information regarding the relative reliabilities of the sources should be included

in the multisource data analysis.

These problems have been the motivation for the development of the

techniques by which inferences can be drawn systematically from complex data

bases composed of disparate, unequally reliable sources, regardless of their
data types and interactions with the other sources.

1.2. Related Works

During the last decade, there have been a number of different

approaches to the analysis of multisource data in remote sensing and

geographic information systems. The approaches listed in this section are not

exhaustive of the related works but are representative.

First of all, the "stacked vector" approach is the most straightforward

method in which all data sources are considered simultaneously by organizing

the respective measurements into a single vector. The resulting compound

vectors are treated as data from a single source. Although this approach has

been successfully applied to combined multispectral data and terrain data

[Hoffer et al. (1975)], its use is limited to the situation where the sources are

similar and their interactions are easily modeled.

The "layered" approach employed by Fleming et al. (1979) is more

general in the sense that it can deal with multiple sources of diverse data types

by treating them separately. This approach has been used for mapping forest

cover types based on multispectral data and topographic data. Its idea is to

classify major cover types based on the multispectral data, and then further
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subdivide the cover types to the species level based on the remaining data.

Hutchinson (1982) has developed a similar approach, so called "ambiguity
reduction" method, whose basic strategy is to stratify the data based on one (or

more) of data sources, assess the results, and resort to the other sources to
resolve the remaining ambiguities. A major disadvantage of these two

approaches is that different groupings or orderings of the sources may produce
different results. Furthermore, their mathematical schemes cannot incorporate

the reliabilities and interactions of the sources into the classification process.

Swain et al. (1985) proposed an approach which can handle an arbitrary

number of independent data sources. In their mathematical framework, the

global membership function is derived from Bayes' formula by applying two
different statistical independence assumptions. Due to the commutative

property of the global membership function, different orderings of the sources in
combination do not have an effect on final results. This method has been

extended by Lee et al. (1987) and Benediktsson et al. (1989a) so that the

relative quality of the sources can be accounted for in the global member-ship

function.

Although their procedures in combining information from multiple data
sources are different, the numerical representations of information in the above

approaches are commonly based on the Bayesian inference, where posterior

probabilities are defined by the multiplication of prior probabilities and
observational probabilities. It is very important to recognize that in dealing with

multispectral data combined with other forms of geographic data, the methods

employed must be able to cope with uncertainties which arise both from intrinsic
randomness of data and from ambiguities in modeling and combining disparate

sources.

Recently, learning procedures based on neural networks have been

applied to the classification of remotely sensed multisource data [Benediktsson

et al. (1989b)]. Since it is nonparametric in nature, the neural network approach
is most useful when the distribution functions of data are not known. However,

this approach usually involves a large amount of computational complexity in

training due to an iterative procedure.

Meanwhile, in the artificial intelligence and knowledge engineering
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community, there have been a number of attempts to build plat, sible models for

automated reasoning with multiple information sources [Cohen (1985),

McDermott and Doyle (1979), Shafer (1976a), Zadeh (1965)]. Such attempts

have been embodied as "inference techniques under uncertainty" [Duda et al.

(1976), Dubois and Prade (1980), Ginsberg (1984), Lowrance and Garvey

(1982)] and used in various areas of science and engineering [Blonda et al.

(1989), Duda et al. (1979), Garvey (1987), Garvey et al. (1981), Kim et al.

(1986), Moon (1989), Shortliffe (1976)]. Applications to multisource geographic

and remote sensing data have been rudimentary at best.

1.3. Statement of Problem

The importance of utilizing multisource data in ground-cover

classification lies in the fact that it is generally correct to assume that

improvements in terms of classification accuracy can be achieved at the

expense of additional independent features provided by separate sensors or

other forms of data sources. However, it should be recognized that information

and knowledge from most available sources of data in the real world are neither

certain nor complete. We refer to such a body of uncertain, incomplete, and

sometimes inconsistent information as "evidential information."

In order for any methodology for multisource data classification to be

implemented as a quantitative, computer-based technique, the methodology

must be able to: (1) represent the partial information provided by the individual

sensors as numerical measures, and (2) combine the measures by a

combination rule to produce the overall assessment of the total evidence.

Consider the problem of classifying a pixel X = (x 1.... , Xm)T to one of n

classes denoted by _j for j=l .... , n, where x i (i = 1.... , m) is the feature obtained

from the ith source denoted by S i and the superscript T denotes the vector

transposition. Suppose each data source S i supports A denoting the event of X

belonging to a certain class cowith a degree of belief B(Afxi) = bi. Throughout

the report, the term "degree of belief" or "belief measure" will be used for any

kind of numerical measure representing one's belief states regarding the

events. Then, the first problem above is equivalent to the construction of belief
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measures based on evidential information provided by each data source.

As we mentioned earlier, evidential information is characteristically

uncertain and incomplete. Therefore, the classical Boolean logic is not

adequate for representing evidence because it cannot have intermediate states
between "True" and "False." In other words, the Boolean expressions never

capture any notion of the relative strength of partial beliefs. Bayesian

probabilities have been frequently used to represent partial beliefs. Yet this is

possible only when there is a sufficient amount of data to estimate the statistical

parameters of an assumed probability model. Further, there is no appropriate

way for representing "total ignorance" in a Bayesian framework because the

Bayesian probabilities should be "additive", that is,

P(A) + P(_,) = 1 (1.3.1)

where 7, is the complementary event of A. To illustrate the consequence of this

requirement, suppose there is no evidence available either for or against the

occurrence of two exclusive and exhaustive events. In the Bayesian framework,

1 which seems quite differentboth events are equally assigned a probability of _,

from specifying that nothing is known regarding the occurrence of the events.

Once the belief measures based on individual sources are given, the

next problem is: whether we can find a combined degree of belief B(A Ix 1, "-

,Xm), or equivalently, whether we can build a numerical formula Fsuch that

B(A I xl, .-. ,Xrn) = F(bl, .-., bin) (1.3.2)

If the data sources are not believed to be equally reliable, the relative

reliabilities of the sources must be considered in computing the combined

degree of belief, i.e.,

B(A I Xl, ... ,xm) = _(bl .... , bm ; al, ..., am) (1.3.3)

where ai's denote the relative reliabilities of the sources.

When the numerical representation of belief and the formulation of

combining function depend on the expertise and intuition of human analysts,

the solutions to the above problems are said to be ad hoc.
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1.4. Objective of the Research

The objective of the research is to develop a mathematical framework for

dealing effectively with multisource data in remote sensing and GIS and to

provide a preliminary demonstration of its value. The methodology described in

this report has evolved from "evidential reasoning," where each data source is

considered as providing a body of evidence concerning propositions with

certain degrees of belief. The degrees of belief based on the body of evidence

are represented by "interval-valued (IV) probabilities" rather than by

conventional additive probabilities so that uncertainty can be embedded in the
measures.

There are three fundamental problems in the multisource data analysis

based on IV probabilities: (1) how to represent bodies of evidence by IV

probabilities, (2) how to combine IV probabilities to give an overall assessment

of the combined body of evidence, and (3) how to make decisions based on IV

probabilities.

There have been various approaches to IV probabilities in the areas of

philosophy of science and statistics. The primary focus of this report is on the

unification of various concepts of IV probabilities so that IV probabilities can be

readily accessible to representation and combination of multiple bodies of

evidence without any conceptual ambiguities. This report pursues an axiomatic

approach to IV probabilities, where IV probabilities are defined axiomatically

based on the least of the common properties which are consistently required in

the various approaches. Secondarily, this report focuses on formal methods of

representing statistical evidence by IV probabilities, first based on acceptable

models in robust estimation of probabilities, and then using the likelihood
function of observed data.

We do not propose any brand-new rule for combining multiple evidence.

Instead, some existing rules are investigated in terms of their inferencing

mechanisms when they are expressed as set-theoretic functions. Although IV

probabilities provide an innovative means for the representation of evidential

information, they make the decision process rather complicated. We need more

intelligent strategies for making decisions. This report addresses the

development of decision rules over IV probabilities as the counterparts of
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conventional decision rules in statistics.

In this report, the problem of multisource data analysis in remote sensing
and GIS is viewed as an application area for the use of artificial intelligence and

knowledge engineering techniques.

1.5. Thesis Organization

This report is made up of seven chapters. In this introductory chapter, the

problems in the analysis of multisource data have been addressed, and the

objective of the research has been stated. In the following chapter, after

reviewing various approaches to IV probabilities, an axiomatic approach to IV

probabilities is introduced. Chapter 3 describes how belief functions for

statistical evidence can be constructed in the form of IV probabilities. Chapter 4

examines subjective Bayesian rules and Dempster's rule for combining

evidence in the sense of satisfying some desirable properties which agree with

human intuition. Particularly, attention is paid to the inference mechanisms of

Dempster's rule. In Chapter 5, decision rules over IV probabilities are defined

on the basis of well-known decision principles in statistics, such as the

Likelihood Principle and the Minimax Principle. For the purpose of general

assessments of its ability in capturing and utilizing information in multisource

data, the approach is applied to the problems of ground-cover classification

based on multispectral data in conjunction with other sources of data in remote

sensing. The experimental results are presented in Chapter 6 and compared to

the performance of a traditional maximum posterior probability classification

method. Finally, Chapter 7 concludes the report by summarizing and

suggesting directions for further research.
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CHAPTER 2

APPROACHES TO INTERVAL-VALUED PROBABILITIES

2.1. Introduction

Interval-valued probabilities are, in general, a more adequate scheme

than point-valued probabilities to express one's state of knowledge in the sense

of handling uncertain, incomplete evidential information. IV probabilities can be

thought of as a generalization of conventional additive probabilities, with the

lower and upper extremes of the interval corresponding to an event being

bounds for the unknown actual probability of the event. The endpoints of IV

probabilities are called the "upper probability" and the "lower probability."

There have been various works introducing the concepts of IV

probabilities in the areas of philosophy of science and statistics. For example,

Koopman (1940) derives the upper and lower probabilities based on the

intuitively evident laws of consistency governing all comparisons in partial

ordering of non-numerical probabilities. Smith (1961) proposes a system of IV

probabilities by considering the strength of one's belief in betting odds as an

interval. Good (1962) considers the upper and lower probabilities of an event

by analogy with the outer and inner measures of a non-measurable set.

Dempster (1967) formulates a system of upper and lower probabilities induced

by a set-theoretic multivalued mapping. Suppes and Zanotti (1977) show how

a random relation generates upper and lower probabilities in the set-theoretic

image space. And Walley and Fine (1982) present a frequentist account of IV

probabilities based on a finite event algebra.

Among the above approaches, only Dempster's and Walley and Fine's

models are useful for parametric statistical inference. Dempster's work and

Shafer's mathematical theory of evidence [Shafer (1976a)], together called

"Dempster-Shafer theory," have shown their usefulness in various evidential
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reasoning systems [Garvey (1987), Garvey et al. (1981), Zhang and Chen

(1987)]. Walley and Fine's approach provides the fundamental concepts of a
frequentist theory of statistics for IV probabilities. Their results indicate that an

objectivist or frequency-oriented view of probability does not necessitate an

additive probability concept, and that IV probability models can represent a type

of indeterminacy not captured by additive probabilities. In the following two
sections, both approaches will be briefly reviewed.

Although the mathematical rationales behind the approaches listed

above are different, there are some common properties of IV probabilities which

are consistently required. This chapter introduces an axiomatic approach to IV

probabilities, where IV probabilities are defined by a pair of set-theoretic

functions satisfying the common properties, so that conceptual ambiguities can
be avoided.

2.2. Dempster-Shafer Theory

In his 1960's works, Dempster (1967, 1968) proposed a generalized

scheme of statistical inference about a parameter space by introducing upper

and lower probabilities induced by a multivalued mapping. His scheme has

been further developed and recast as a "mathematical theory of evidence" by

Shafer. In this section, after briefly recalling the concepts of Dempster's upper

and lower probabilities, we discuss the formal framework of Shafer's theory in

the aspect of evidential reasoning.

Suppose we have a pair of spaces X and _ denoting respectively a

sample space and a finite parameter space. Let E be a multivalued mapping

which assigns a subset r'xc _ to every x _ X and let _ be a probability

measure assigning probabilities to the members of the class _ of subsets of X.

Then, (X, hv, I_) is a probability space, and this model corresponds to a random

experiment where the outcome cannot be precisely observed but can only be

located in a subset of all possible outcomes.

For any A c _, define

A*= { x e XI ]-'x c_A 40 } (2.2.1)
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and

A,={x• X IF xcA,F x_O} (2.2.2)

A* consists of those x• X which can possibly correspond under F' to an o_• _,

while A, consists of those x• X which must lead to an o)• _. Then, the upper

probability and the lower probability of A are defined respectively as :

P*(A)- I_(A*) (2.2.3)
p(O*)

I_(A,) (2.2.4)
P,(A) - _(_,)

where _* = _, is the domain of V. Note that P*(A) and P,(A) are defined only if

_(_*), 0. Since A* consists of those x• X which can possibly correspond

under 1-"to an m • A, I_(A*) may be regarded as the largest possible amount of

probability which can be transferred to the outcomes _ • A from the measure _.

Similarly, A, consists of those x• X which must lead to an _ • A. So, t_(A,)

represents the minimal amount of probability which can be transferred to the

outcomes co • A. The denominator _(_*) = !_(_,) in eq. (2.2.3) and eq. (2.2.4)

is a normalizing factor. The normalization is necessary in the case where there

is any x • X which does not map into any subset of _. In this case, the subset

{ x • X I Vx = O } must be removed from X, and the measure of the remaining

set _* should be renormalized to unity.

Dempster has assumed that the actual probability measure of A, P(A),

lies in the interval [P,(A), P*(A)] such that

P,(A) < P(A) < P*(A) (2.2.5)

The degree of uncertainty concerning the true value of P(A) is represented by

the width, P*(A) - P,(A), of the interval.

In Shafer's theory, _ is called the "frame of discernment" containing a

finite number of exhaustive and mutually exclusive propositions. 2 _ denotes

the set of all possible subsets of _. His theory of evidence may begin by

deft ning "basic probability assig n ment":
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m" 2 _ _ [0, 1]

where m satisfies the following conditions,

(1) 40)=0,

(2) _ m(A)= 1
A_c.Q

(2.2.6)

(2.2.7)

(2.2.8)

Given a basic probability assignment m over 2 _, Shafer's "belief

function" Bel: 2_ --> [0,1] is obtained as:

Be/(A) = _ re(B) (2.2.9)
BC_A

It satisfies the following conditions:

(1) Be[(2_) = 0

(2) Bef(_Z)= 1

(3) For every integer n and every collection A_, ..., A n of subsets of _,

(2.2.10)

(2.2.11)

Be_AIu...UAn) >_z_.,Be/(Ai)-_. Bel(AinAj)+...+ (-l)n+lBe_AIc_..._An)
i t<J

(2.2.12)

The basic probability assignment which produces a given belief function is

uniquely recovered from the belief function by the inverse formula of eq. (2.2.9)
[see Shafer (1976a)]:

_A) = _ (-1)IA-BIBe/(B) forallA c_ (2.2.13)
BCA

where IC[ denotes the cardinality of a set C.

The basic probability number of a set A c _, m(A), may be understood

as the exact measure of belief that the knowledge source has committed to A.

A is called a "focal element" of the belief function Be[ over E2 if re(A) > 0. The

measure ascribed to the frame of discernment, _£2), represents the degree of
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ignorance, i.e., the portion of belief that could not be assigned to any smaller
subset of _ based on the evidence at hand. It may be committed to some
subsets with the help of additional information. Be/(A) represents the measure

of the total belief committed to A. In fact, eq. (2.2.9) reflects the basic intuition

that a portion of belief committed to a proposition is also committed to any other

proposition it implies.

While Be/(A) describes one's belief about A, it does not reveal to what

extent one doubts A, i.e., to what extent one believes the negation of A, A.

Once Bet(_,) is known, the upper probability of A is defined as

P/(A) = 1 - BetA) (2.2.14)

In the evidential reasoning based on the Shafer's theory, Bel(A)is called

"degree of support" representing the extent to which a given body of evidence

supports A, while PI(A) is called "degree of plausibility" representing the extent

to which the body of evidence fails to refute A.

2.3. A Frequentist Theory of Upper and Lower Probabilities

Walley and Fine (1982) give a limiting frequentist interpretation of P, and

P* as "lim inf" and "lim sup" of relative frequencies in hypothetical unlinked

repetitions of an experiment, which is a generalization of the usual limiting

frequentist interpretation of additive probabilities. Their results provide the

statistical basis whereby IV probability models of random experiments can be

inferred from observations made on unlinked repetition. In this section briefly

described is the link between relative frequencies and IV probabilities.

Let B be a Boolean algebra of subsets of _. Suppose that propensities

of events Ae B in independent, identically distributed (lid) repetitions _], ..., En

are represented through the lower probability P,. To provide a connection

between frequency and propensity, P, is inferred or estimated from relative

frequency data. Let ri denote the relative frequencies of all events in _1..... 'Sn"

More reliable information regarding the underlying marginal probability P, can

be obtained on the basis of the outcomes of the repeated experiments than the

relative frequencies observed at any particular single experiment El. Walley and
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Fine propose an estimator

rn = min { rj(A) • k(n) < j _<n } for all A _ 2 n (2.3.1)

where k is some function such that k(n) .-> oo and k(n) --> 0 as n --->oo (e.g., k(n)n

Although it is not "optimal" in any sense, the above minimum estimator

makes use of the additional information concerning the past evolution of the

sequence of relative frequencies. The estimator has asymptotic properties in a

sequence of infinite trials, and parallels the Bernoulli's law of large numbers.

There is no explicit description of -rn in terms of relative frequencies. However,

the upper probability is given in terms of upper and lower "envelopes" which will
be described in the next section.

2.4. Axiomatic Approach

A system of IV probability derived from the definitions and specifications

of a particular mathematical or statistical concept may cause complications

resulting from the need to satisfy underlying assumptions of the system. In the

axiomatic approach, IV probabilities are formulated by defining the upper and

lower probabilities of the interval as set-theoretic functions which satisfy some
pre-specified axioms.

Definition 2.1. [Suppes (1974)] Let B be a Boolean algebra of subsets of _.

The interval-valued probability [L, U] over B is defined by the set-theoretic
functions

lower probability function

upper probability function

satisfying the following conditions:

L" B--> [0,1] (2.4.1)

u B _ [0,1] (2.4.2)
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I

II

III

U(A) -> L(A) >_ 0 for all A e B

U(_) = L(_) = 1

For any A, B e B and AnB =O,

L(A u B) > £..(A) + L(B)

U(A u B) >_ U(A) + U(B)

L(A L) B) _<L(A) + U(B) -< u(A L) B)

(Super-additivity of L)

(Sub-additivity of u)

(Mixed-additivity of L and u)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

These conditions are the least requirements on L and u for further development

of the theory of IV probability. The following lemma sets forth some significant

properties of IV probabilities as simple consequences of the above definition.

Lemma

following properties:

2.1. For any A, B e B, the interval-valued probability [L, U] has the

(i) L(A) + U(_.) = 1 (2.4.8)

(ii) _O) = U(O) = 0 (2.4.9)

(iii) If AcB then L(A)<_B) and U(A)<U(B) (2.4.10)

(iv) L(A)+L(B) < I+L(Ac_B) (2.4.11)

(v) U(A) + u(B) > 1 + u(A n B) (2.4.12)

Proof. (i) follows immediately from eq. (2.4.4) and eq. (2.4.7).

eq. (2.4.4) and eq. (2.4.8). For (iii), if A c B then by eq. (2.4.7)

u(B) = U(A u (B-A)) > U(A) + L(B-A)

and by eq. (2.4.5)

L(B) = L(A L)(B-A)) > L(A)+ L(B-A)

Since _B-A) > 0 from eq. (2.4.3),

(ii) is obtained by

U(A) < u(B) and L(A) <_B)
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For (iv),

L(A) + L(B) _< 1- + L(; nB)

= 1 - U(_)+ I - U(Ant_)

___2-

= 1 + _AnB)

Likewise, (v) can be proved. []

(By eq. (2.4.8) & eq. (2.4.10))

(By eq. (2.4.8))

(By eq. (2.4.6))

(By eq. (2.4.8))

The following definition given by Huber (1973) connects the upper and

lower probabilities to the supremum and infimum of a class of probability

measures. This connection becomes essential later in Section 3.2 where IV

probabilities are constructed by some models in robust estimation of probability
measures.

Definition 2.2. Let M be the set of all probability measures on a Boolean

algebra Bof all subsets of _ and Pan arbitrary non-empty subset of M. [L, U] is

said to be "representable" by P if L and u can be defined as:

L(A) = inf { x(A) • 7r _ P} (2.4.13)

and

U(A) = sup { n(A)" 7r e P} (2.4.14)

for all A_ B. In this particular case L and U are called a "lower envelope" and

an "upper envelope" respectively.

It has been proven by Huber and Strassen (1973) that if [L, U] is an envelope,

then it is an IV probability. The converse is not always true. The following

example from Huber (1981) illustrates such a case. In fact, [L, U] being an IV

probability does not imply even the existence of the class P of probability

measures.

Example 2.1. Let _ have cardinality = 4, and assume that L(A) and
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U(A) depend only on the cardinality of AcfI, according to the following table:

IAI 0 1 2 3 4
1 1- 1L 0 0 _ 2

1 1- 1 1
U 0 _ 2

Then [L, U] satisfies the IV probability's conditions in Definition 2.1, but there is

only a single additive set function between L and u, namely P(A) = I____1;hence

[L, U] is not representable.

The following definition and lemma result in interesting subclasses of IV

probabilities by requiring relatively stronger constraints on L and U:

Definition 2.3. [Choquet (1953)] The lower probability function L in Definition

2.1 is said to be "monotone of order n" or briefly "n-monotone", where n (> 2) is

a positive integer, if for every collection A_, A 2, ..., An of subsets of f/

L(AIU..._An) 2 E£_Ai) - EL(Ai_Aj) +...+ (-I) n+1L(AI_.--nAn) (2.4.15)

i i<j

The conjugate upper probability function u is said to be "alternating of order n"

or "n-alternating" and satisfies

U(AIU...UAn) < Eu(Ai)-Eu(AinAj)+...+ (-l) n+1U(Aln...nAn)
i i<j

(2.4.16)

It is known that if L (U) is monotone (alternating) of order n, then it is also

monotone (alternating) of order k for any integer 2 _<k < n. In particular, when

k=2, L and u have the following properties:

L(AlWA2) >- L(A1) + L(A 2) - L(AI_A2)

U(A1LPA2) _<U(A1) + U(A 2) - U(AlCqA2)

(2-monotone)

(2-alternating)

(2.4.17)

(2.4.18)

The following lemma shows that [L, U] satisfying the above equations is an IV

probability.
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Lemma 2.2.

satisfy the following conditions for all A _ B:

(i) U(A) _> L(A) > 0

(ii) u(_) = G_) = 1

(iii) _A) + U(_) = 1

then [L, U] is an IV probability.

If L and u are respectively 2-monotone and 2-alternating and

The converse is not necessarily true.

(2.4.19)

(2.4.20)

(2.4.21)

Proof. To prove this lemma, we only need to show that L and u are super-

additive, sub-additive, and mixed-additive as in Definition 2.1. For any A, B _ [3,

if AnB = E_, from eq. (2.4.17) "2-monotone" implies "super-additive", and from

eq. (2.4.18) "2-alternating" implies .... ,,sub-addltwe. When AnB = _, ]_ =

(]_B-)uB. Using eq. (2.4.5) and eq. (2.4.20),

Likewise,

L(_) = L(_)uB) _> LGk--O-g) + L(B) = 1 - U(AuB) + L(B)

•". U(AuB) _> U(A) + _B)

U(B) = U(Au_)) _< U(A) + U(-A--_-B) = U(A) + 1 - L(AuB)

•". L(A_B) _< U(A) + L(B)

Hence, L and U have mixed-additivity, and the above lemma is proved.

By comparing eq. (2.4.15) with eq. (2.2.11), Shafer's belief function Bel is n-

monotone. Consequently, P( is n-alternating. According to the above lemma,

Be[ along with P1 formulates a subclass of IV probabilities. We can summarize

the implicative relationship among IV probabilities and its subclasses as
follows:

L is n-monotone and u is n-alternating for n >2 _ L is 2-monotone and

u is 2-alternating _ [L, U] is an envelope _ [L, U] is an IV probabilities.
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In practical applications, 2-monotone and 2-alternating IV probabilities seem to

be sufficiently general and mathematically amenable to develop an alternative

statistical inferencing scheme to Bayesian inferencing.

2.5. Summary

In this chapter, we have discussed the axiomatic approach to IV

probabilities whose mathematical framework is the theoretical basis of the

contents treated in the rest of this report. The axiomatic IV probability was

represented first by the pair of set functions and then by the supremum and

infimum of a class of probability measures. Subclasses of IV probabilities were

introduced.

IV probabilities as a generalization of additive probabilities give rise to

some advantages such as representing a certain type of indeterminacy or

uncertainty not captured by additive probabilities. The choice between

deterministic, additive probability and IV probability models will depend on our

background knowledge concerning the context of particular applications, and

especially the amount and reliability of the information available to help in

specifying the model.

In this chapter, the contribution of this research is in a unification of

various concepts of IV probabilities so that IV probabilities can be readily

accessible to representation and combination of multiple bodies of evidence.

Lemmas 2.1 and 2.2 are originally formulated and proved in this report.
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REPRESENTATION OF

CHAPTER 3

BELIEF FOR STATISTICAL EVIDENCE

3.1. Introduction

When a body of evidence is based on the outcomes of statistical

experiments known to be governed by any (objective) probability models, it is

called "statistical evidence." One of the fundamental problems in applying IV

probabilities to real-world problems is how to represent a body of statistical

evidence by IV belief functions. In fact, the utility of any existing system of IV

probabilities is limited by the lack of effective approaches to quantitative

representation of bodies of evidence. Throughout this chapter a lower

probability and an upper probability are respectively called a "support function

(Sp)" and a "plausibility function (P0" implying that they provide belief measures

for the class of subsets of a finite space _ based on a body of evidence.

The most extreme type of interval-valued belief function is the "vacuous

belief function" defined as

0 if A_ (3.1.1)Sp(A)= 1 if A=_

and

pL(A)= f 0 if A=E_ (3.1.2)1 if A_O

The vacuous belief function assigns [0,1] to every non-empty subset A of _, and

[1,1] to _ itself. Its only focal element is _. It is a natural model for representing

complete ignorance - no evidence about _ at all.

The next simple type is a "simple support function", a belief function

based on "homogeneous" evidence - a body of evidence which precisely and
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unambiguously supports a single non-empty subset of _2. Suppose Sp is a

simple support function focused on a subset A, and let Sp(A) = s (0 < s < 1).

Then the support function for any B _ _ is given by

i if B_A
S_B) = if B=_A but B_f2

if B=_
(3.1.3)

It can be easily shown that a simple support function is 2-monotone. The

conjugate plausibility function of the above support function is given by

P/(B) ={ 1-s if AnB=_1 if AnB_ (3.1.4)

The effect of the evidence represented by the simple support function in eq.

(3.1.3) is limited to providing a degree of support s for A and any subset B of
implied by A.

The next section introduces a possible way of constructing interval-

valued belief functions based on some models in robust statistics. Shafer

(1976b) presents two different methods for constructing belief functions based

on a body of statistical evidence: the "linear plausibility method" and the

"simplicial plausibility method." Section 3.3 examines the characteristics of the

belief function in the linear plausibility method and provides its generalized

scheme by weakening an assumption underlying it. The result of the second

method, which is the same as that of Dempster's structure of the second kind

[Dempster (1968)], is outside the scope of this report because it applies to an

infinite space _ which parametrizes all multinomial distributions and

consequently presents formidable computational difficulties. Section 3.4

discusses the quantitative representation of source reliability in the context of

pixel classification of multiple data sources.

3.2. Belief Functions based on Robust Estimation of Probability
Measures

In robust statistics, the true underlying probability distribution is assumed
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to lie in a certain neighborhood of an idealized model distribution. The

neighborhood describes inaccuracies in the specification of the true distribution.

This section illustrates how belief functions in the form of IV probabilities can be

constructed by the supremum and infimum of a class of probability measures

describing the neighborhood, as defined in eq. (2.4.13) and eq. (2.4.14).

Definition 3.1. [Huber (1973)] Consider any set functions ;Land t_ on B. t_ is

said to "dominate" X, denoted by t_ ,, ;L, when _(A) ___;L(A) for all A _ B.

Let Pt_ = { _ e M I ,o ,, zr } be the set of all probability measures

dominated by _. The following lemma from Huber and Strassen (1973) shows

the existence of a 2-alternating upper probability in Pt_-

Lemma 3.1. Let _ be 2-alternating. Then for every A e B there exists a 7re Pt_

such that _r(A) = tKA). This implies that _ coincides with the upper probability

determined by P_.

Most of the proposals listed in Huber (1981), such as E-contamination, total

variation, Prohorov distance, Kolmogorov distance, and L6vy distance, for

formalizing the notion of an inexactly specified probability measure lead to a set

P_ defined by a certain 2-alternating set function. The following models are the

ones which make sense in arbitrary probability spaces.

Let e and 5 be fractions between 0 and 1, and Po denote an idealized

model distribution as an estimation of the actual distribution:

A. E-contamination or gross error model :

p_={_ Mlzc=(I-e)Po+_A,A_ M}

For any non-empty set A E B,

_)(A) = sup p_) = (l - _)Po(A) + E

(3.2.1)

(3.2.2)
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B. Total variation model :

P_ = { _ _ MI I_(A) - Po(A)I < E for all A _ B } (3.2.3)

For any non-empty set A _ B,

_(A) = sup p_ = min {Po(A) + _, l } (3.2.4)

For both cases, _ is the 2-alternating upper probability function, and the

conjugate lower probability function is obtained as (1-_c), where the superscript
c denotes the complement.

The _-contamination model assumes that the actual probability has a

gross error with an arbitrary (unknown) distribution, instead of a strict parametric

model. The total variation model formalizes the possibility of unknown small

deviations from the idealized model Po by assigning a tolerance to it.

In being applied to real problems, both models demand additional labor

to find an optimal value of E. Different E's will result in various IV probabilities.

Most of the algorithms for robust parameter estimation based on the above

models adopt iterative procedures [Eom (1986), Huber (1981)]. The iterative

procedures not only cost tremendous computational complexity but also raise

another problem of proving convergence of estimators.

In the following section, IV belief functions are derived from the likelihood

functions of observed data. Compared to the ones described in this section,

they require much less computation and have readily usable mathematical
formulas.

3.3. Belief Functions based on Likelihood Principle

The belief functions described in this section depend on two underlying

assumptions. Before the assumptions are listed, it is necessary to define the
"consonance" of belief functions.

Definition 3.2. [Shafer (1976a)] A belief function is said to be "consonant" if

its focal elements are nested, i.e., if for A i _ _ (i=1 .... ,r) such that m(Ai) > 0 for
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r

all i and __, m(A i) = 1, A i (::: Aj for any i < j.
i=1

A simple support function is consonant while the converse is not

necessarily true. The following lemma describes the nature of consonant belief

functions.

Lemma 3.2. [Sharer (1976a)] Suppose Sp: 2 _ --> [0, 1] is a support function

and P/: 2£_ _ [0, 1] is the conjugate plausibility function. Then the following

assertions are all equivalent:

(1) Sp is consonant.

(2) S_AnB) = min { S_A), S_B) } for all A, B c _.

(3) Pt(AuB) = max { P/(A), PZ(B) } for all A, B c _.

(4) P_A) = max { P/({0)}) : co e A } for all non-empty A e _.

Example 3.1. Let _ = { o)1, 0)2, 0)3 }" Suppose a body of evidence E provides

basic probability numbers _{0)1}) = 0.5, _{0)1, 0)2}) = 0.2, _) = 0.3, and _A)

= 0 for all other subsets A of _. Then the support function Sp of E is consonant

and given as:

= 05

Sp({0)l, 0)2} ) -- 0.7

Sp(_) = I

The plausibilityfunction Plof E isgiven as:

PZ({0)I})= 1 Pl({0)2})= o.5

P{({0)1, 0)2}) = I P/({0)1, 0)3}) = 1

P_) = 1

Now, suppose that the observations of a statistical experiment are
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governed by one of a finite set of probability models { PcoI co• £2 }, where Po is

an ordinary probability density function on X given co. The linear plausibility

function based on this body of evidence is derived from the following
assumptions:

(1) the degree of plausibility of a singleton {0) I co• _} is proportional to Pco;

(2) the plausibility function is consonant.

The first assumption corresponds to our intuition that an observation x • X

favors those elements of _ which assigns the greater chance to x. Shafer

claims that x should determine a plausibility function P/x obeying

P/x({0)}) = C-po(x) for all co• (3.3.1)

where the constant C does not depend on 0). He further shows that the first

assumption, together with the second assumption of consonance, determines a

unique consonant plausibility function as

P/x(A)-
max{pc(x) • 0)• A}

max{pco(x) • 0)• £2}
for all non-empty A c (3.3.2)

When A is a singleton, say {0)'}, the consonant plausibility function gives the

relative likelihood of 0)' to the most likely element in £2. The conjugate support

function is obtained by

spx(A) = 1
max{po_(x ) • 0)• _.}

max{pco(x) • 0)• £'2}
for all non-empty A c

The next theorem derives the consonant basic probability assignment.

(3.3.3)

Theorem 3.1. Suppose that _2° = { 0)(1), 0)(2)..... 0)<n) } is an ordered set of E2

such that P000)> Pco(J)for any l<i<j<n. If SPx based on the statistical evidence is

consonant, then it has the focal elements

Ak = { 0_0), 0)(2)..... 0)(k) } for k =1 .... , n (3.3.4)
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Proof. Let mx denote the basic probability function of 3px. For a singleton

subset A of _o,

mx(A) = Spx(A) = {

v (_,C0(1),X, - Pco(2)(x) if A = {o)(1) }
pco(1)(x) (3.3.5)

0 otherwise

Thus, A 1 = {0)(1)} is the smallest focal element of 5px. For any A c _o (IAI = 2),

eq. (2.2.13) gives

f p_(2)(x) - pco(3)(x) if A = {co0),0)(2)}
mx(A) = pco(1)(x) (3.3.6)

0 otherwise

Let A = { coO).... ,0)(i-1),o)(i+1) ..... co(k) } for3 _<k _<n.

rex(A) = ,Y_, (_I)IA-BI ,.Cpx(B )
BCA

= __, [ (-1)lA-B-ll,.,Cpx(B) + (-1)lA-B-215px(BU{0)(k)})]
BC(A-{ o3(k)})

=- mx(A-{c°(k)})+ Z [ (-1)IA-BISpx(BU{c0(k)})]
BC(A-{co(k)})

= - rex(A-{co(k)}) + rnx(A-{0)(k)})

=0

For A k = { 0.)(1) 0)(2) ..... O)(k) } (3 < k < n-1 ),

probability numbers

mx(Ak) = Po)(k)(x)- pco(k+1)(X)

p_(1)(X)

eq. (2.2.13) gives non-zero basic

(3.3.7)

And,

n-1

mx(_'_2O) = 1 - Zmx(Ak) Iv°t(n)(X)
k=l = Po) (1)(z)

(3.3.8)
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Hence, the basic probability function mx of SPx is given as

rex(A) =

P,,,O)(x)

P,,,O)(x)
0

for A={0)(1), 0)(2) ..... 0)(k)} (1 <k<n-1 )

A = _'2 ° (=_"2)

otherwise

(3.3.9)

and the focal elements of Sp are A k = { 0)o), 0)(2)..... 0)(k) } for k =1 .... , n. •

Although the consonant belief function described above is simple to

implement, its application is limited to the particular cases where the

consonance assumption is satisfied. Indeed, Shafer made a remark regarding

his method; ". .... these assumptions must be regarded as conventions for

establishing degrees of support, conventions that can be justified only by their

general intuitive appeal and by their success in dealing with particular

examples." [Sharer (1976a)]

A generalized scheme of the consonant support and plausibility functions

can be formulated by weakening the consonance assumption.

Definition 3.3. A support function ,.,Cp: 2 _ _ [0, 1] is said to be "partially

consonant" if there exists a partition { 'W1, ,W2..... 'Wr } of _2 and 3"p is consonant

in every Wk for k=l ..... r.

In the problem of classifying remotely sensed data, _2 represents a set of

information classes. The information classes in remote sensing can be

partitioned into major ground-cover types, e.g., soil, vegetation, and water

[Swain et al. (1978)]. This hierarchical structure of the information classes

motivates the partitioning of _ for partial consonance.

The following theorem and lemma derive the partially consonant basic

probability assignment and the corresponding interval-valued probabilities.
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Theorem 3.2. Suppose that Sp is partially consonant on a partition { W 1, W2,

• Wr}of £'2. Let _k {°_(k1), 42), (nR),.. , = .... COk t denote an ordered set of W k such

that Po)_) > Po_ ) for any 1-<i<j---nk, where Enk = n. Then
k=l

the basic probability

function m of 3p is given as

re(A)='

C rr_ (I) /_ (1+1h
p'tro)k --ro)k jr

Cp.Pm(2 R)

0

for A={CO(k1), ..., (o(_)} (1-<l-<nk-1)

for A= q4_k

otherwise

for l<k<r (3.3.10)

where

r

Cp=[_max { Poo 'coeW k} ]-1 (3.3.11)
k=l

Proof. Since Sp is partially consonant on { W 1, W 2..... Wr }, it is consonant in

every Wk for k=l, ..., r. Using eq. (3.3.9), we can derive eq. (3.3.10). To prove

this theorem, it is sufficient to derive eq. (3.3.11 ).

r

T_,, IAI= E {
Ac__Q k=l

r

__, re(A)} = Cp._L, max{ pco " toe Wk}

Ac_W k k=l

o°°

r

Cp= [ _, max { Pco "o}e Wk} ]-1
k=l

Thus the theorem is proved. •

Lemma 3.3. The partially consonant plausibility function and support function

corresponding to eq. (3.3.10) are

r

P/(A)=Cp'_ max{p(o "co e AnWk}
k=l

(3.3.12)
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r

max{P/({(0}) • co e Ac_Wk}
k=1

r

Sp(A) = _, [max{p(0 • co _ Wk} - max{p(0 "co _ _c_,Wk} ]
k=l

(3.3.13)

(3.3.14)

Proof. Use eq. (2.2.13) and eq. (2.2.14). •

Partial consonance is weaker than consonance in the sense that it

includes consonance when r = 1, i.e., the partition of _ is &'-2itself. In the other

extreme case where r=n, i.e., the partition consists of n singleton subsets of _,

the partially consonant support function becomes the Bayesian probability

function (Sp({(0i}) = P/({(0i}) = m({(0i}) for i=1 ..... n). While partial consonance

gives a flexibility to Shafer's linear plausibility method, it raises the problem of

how to determine the optimal partition of _2; i.e., the partition which will give the

best classification accuracy. In practice, the partition must be chosen based on

relationship among the classes in the application at hand.

Example 3.2. Let _ = {(01, (02, (03, (04}" Suppose that a single observation x

provides pool(x) = 0.5, p(02(x) = 0.3, p(03(x) = 0.15, and p(04(x) = 0.05. Table 3.1

shows the values of mx, SPx, and P/x for all subsets of _ in both cases of

consonance and partial consonance on the partition {{(01, (02}, {(03, (04}}.

It is very interesting that both intervals given by the belief functions

contain the additive probability (PA(X)) for every A except {(01, (02} and {(03, (04} in

partial consonance. Compared with the consonance case, the partially

consonant belief function always provides intervals of less width,

correspondingly less degrees of uncertainty. It means that the assumption of

partial consonance requires more knowledge about a given body of evidence.

Note that low Sp do not necessarily imply low P/whereas high Sp always

imply high P[. We can also observe two relations: (1) S_A) + Sp(_,) < 1, and (2)

P/(A) + P/(_,) > 1 for every A. The first relation indicates that it is hardly possible

for both A and _, to be well supported, and the second one is interpreted as
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either one of A and _, or possibly both must be highly plausible.

The belief functions described in this section are considered to be based

on the Likelihood Principle because they are expressed in terms of likelihood

functions, eq. (3.3.2), (3.3.3), (3.3.12), and (3.3.14). They are obtained by

transforming the assessment of statistical evidence already in the form of point-

valued likelihood functions into interval-valued probability models.

Table 3.1. Consonant and Partially Consonant Belief Functions
based on a Single Observation.

A

{%}
{o)4}

PA(x)

0.50

%}

0.30

0.15

0.05

0.80

mx

0.4

0.0

0.0

0.0

0.45

0.3

Consonance

5px

0.4

0.0

0.0

0.0

0.7

0.6

0.0

0.3

0.1

1.0

Partial

mx

0.31

0.00

0.15

0.00

0.46

0.65 0.0 0.4 1.0 0.00

{601, 604} 0.55 0.0 0.4 1.0 0.00

0.0 0.6 0.00

0.00.35

0.0

0.9

0.0

1.0

0.20 0.0

o)4}

0.2

0.6

0.3

1.0

{%, o)4}

1.0

0.95

0.1

{oh, (o2,%}

1.00

0.00

0.08

0.00

{oh, o)2,0`}4} 0.85 0.0 0.7 1.0 0.00

{oh, %, 0`}4} 0.70 0.0 0.4 1.0 0.00

{ 0)2,%, 0.}4} 0.50 0.0 0.0 0.6 0.00

0.00

Consonance

S px Plx

0.31 0.77

0.00 0.46

0.15 0.23

0.00 0.08

0.77 0.77

0.46 1.00

0.31 0.85

0.15 0.69

0.00 O.54

0.23 0.23

0.92 1.00

0.77 0.85

0.54 1.00

0.23 0.69

1.00 1.00



32

3.4. Representation of Source Reliability

Since information sources in remote sensing and GIS are in general not

equally reliable, they usually provide various degrees of support for an event.

In order to incorporate a relative quality factor, so-called "degree of reliability," of

individual data sources into the combination of multiple evidence, reliability

should be represented quantitatively. Although the belief functions in the form

of IV probabilities are useful to represent the uncertainty in describing the

degrees of support for individual events, they do not take into account the

relative source reliability representing a body of evidence as a whole.

As a simple example, consider a problem of classifying a pixel using two

data sources as depicted in Figure 3.1. Let X_ and X2 be the vectors of the pixel

obtained from Source 1 and Source 2 respectively. Based on Source 1 alone,

the pixel seems to belong to ml while according to the other source it is more

likely to come from m2. If there is a priori information concerning how reliable

each data source is, it would be reasonable to make a decision on the

classification of the pixel using the source reliabilities as well as the

probabilistic information from both sources.

Benediktsson and Swain (1989) have used three statistical'measures,

overall classification accuracy, weighted average separability, and

equivocation, to quantify reliability of sources in the classification of multisource

data. Which measure should be applied to a particular problem depends on the

meaning of the reliability of a source in the context of the problem, that is, the

sense in which the source is called reliable. For the problem of multisource

data classification, it is quite natural that a source is called reliable when it gives

higher classification accuracy. Measuring reliability of a source based on

classification accuracy is straightforward. It is usually computed from the overall

classification accuracy over a representative set of training samples.

A statistical separability measure such as Jeffries-Matusita (J-M)

distance, Bhattacharyya distance, or (Transformed) Divergence is an alternative

to the numerical representation of source reliability assuming that a data source

provides higher classification accuracy when information classes are more

separable in the source. For example, the J-M distance defined as follows is a

measure of statistical separability of pairs of classes:
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Source I

Source 2

X 2

Figure 3.1 An Example of Conflicting Evidence in
Multisource Data Classification.
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X

where p(Xlmi) is the probability density function of class (% When each class is

assumed to have a normal density function ._Mi,]£i) (i = 1, ...,n), the above

equation is reduced to

_j= _/2(1 - exp(-13ij)) (3.4.2)

where Bij is the Bhattacharyya distance between mi and mj defined as:

1
J3ij= g_(M i _ Mj)T (£i; £j)-1 (Mi_ Mj)

+ :J)l
+ _-log e [i ''(T'`

 lXil'lXjl
(3.4.3)

The average J-M distance over all class pairs is given as:

i=nl_Jay = _ P(mi)-P(mj).Jij (3.4.4)
i=1 j=l

where p(mi) is the prior probability of m i.

For the normal distribution case Transformed Divergence between mi

and mj is defined as:

_,j = 2 [ 1 -exp(-8--_ Dj') ] (3.4.5)

where

'tr[(z:i l - )(Mi Mj)(Mi-Mj)rJ,,Dij = _ _ Z,j) (,y.,; 1 _ ,7_.,i-1)] + 2 + ,y_.,j1 _ (3.4.6)

Then the average Transformed Divergence over all class pairs is given as:

Dtav = ___.n_np(mi).p(o)j).Dti j
i=1 j=l

(3.4.7)

Equivocation is the class separability measure corresponding to

Shannon's entropy measure [Devijver and Kittler (1982)]. Benediktsson et al.
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(1989) use equivocation to measure the reliability with which classes

identifiable by means of each data source can be used to identify the

information classes of interest in a given application.

The three measures briefly reviewed above are related indirectly to the

classification accuracy of the source. The source reliability can have a little

different meaning in the mathematical framework of the theory of evidence. In

the previous example of Figure 3.1, assume that Source 1 is a main data source
and Source 2 an ancillary data source, and that the main source gives higher

classification accuracy over training samples. Then Source 2 can be
considered as reliable as Source 1 if there is little overall conflict between them

in providing evidence for classifying observations. And its reliability will
decrease according to the extent of conflict with Source 1. The following

definition gives a notion of quantifying source reliability based on a measure of
the extent of the conflict between the belief functions provided by two entirely

distinct bodies of evidence.

Definition 3.4. [Shafer (1976a)] Assume that Be[ 1 and Be[ 2are belief

functions provided by two bodies of evidence. Let m 1 and m2 denote the basic

probability assignments of Bell and Be[2, respectively. The measure of conflict

between Bell and Be[2 is defined as:

k= _ ml(Ai), m2(Bj) (3.4.8)

AinBj=O

k is a fraction between 0 and 1. When Bef_ and Be[2 have no conflict, k

=0. If they are completely contradictory, k=l. After k is computed for every

pixel, the average measure of conflict between the sources is obtained as:

IoK = E[ft] = kp(f0 dk (3.4.9)

where P(f0 is the probability density function of k.

In order to illustrate their uses and compare the performances, the

average J-M distance (Jay), the average Transformed Divergence (Dtav), and the
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average measures of conflict between pairs of sources in the Anderson River

data set were computed. The data set has 6 sources as shown in Table 3.2.

For more detail about this data set, see Section 6.2. For this experiment, six

information classes are defined. Each class has 100 training samples uniformly
scattered over the test fields. The first row in Table 3.2 shows the overall

classification accuracy (OCA) over the training samples using the Maximum

Likelihood classification. Although most of the classes are not normally

distributed in the topographic data sources (see Figures 6.9 through 6.12), they

were assumed to be so in the calculations. The maximum values of Jay and _av

are "_ and 2, respectively. When they are directly used as measures of source

reliability, they should be divided by the corresponding maximum value so that

their maximum is 1. Table 3.2 shows that the separability measures agree with

the overall classification accuracy in ranking the sources for their relative

reliabilities. Based on the measures in Table 3.2, the sources can be ranked

from best to worst as A/B MSS, Elevation, SAR-Shallow, SAR-Steep, Aspect,

and Slope.

Table 3.2 Overall Classification Accuracy (OCA), Average J-M Distance

(Jay), and Average Transformed Divergence (_av) of Sources in

Anderson River Data Set (Training Samples).

SAR SAR

A/B MSS Shallow Steep Aspect Elevation Slope

OCA (%) 83.5 34.7 33.5 30.3 45.8 29.2

Jay 1.09 .57 .49 .35 .66 .21

D_av 1.58 .52 .40 .32 .82 .08

The average measures of conflict between pairs of sources in the same

data set were computed for the training samples and the combined training and

test samples, and the results are listed in Table 3.3 and 3.4, respectively. The

type of the belief function used was the consonant belief function. Since the

probability density function of kin eq. (3.4.8) was not known, the histogram

approach was used to estimate _f_. The results show that Elevation and SAR-
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Shallow sources have less conflict with A/B MSS in providing bodies of

evidence, compared to the remaining sources. Knowing that A/B MSS source

gives the highest overall classification accuracy, relative degrees of reliability of

the other sources can be assigned according to their measures of conflict with

A/B MSS such that the less conflicting, the more reliable. Thus the sources can

be ranked from best to worst as A/B MSS, Elevation, SAR-Shallow, Aspect,

Table 3.3 Average Measures of Conflict between Pairs
of Sources in Anderson River Data Set.

(Using Consonant Belief Function with Training Samples)

SAR
Shallow

SAR

Steep

.586A/B MSS .388

SAR .269 .387
Shallow

.436SAR

Steep

Aspect

Elevation

Aspect

.543

Elevation

.327

.429

.437

.588

Slope

.565

.404

.341

.463

.543

Table 3.4 Average Measures of Conflict between Pairs
of Sources in Anderson River Data Set.

(Using Consonant Belief Function with All Samples)

SAR
Shallow

.407

SAR

Steep

.585A/B MSS

SAR .284 .385
Shallow

.437SAR

Steep

Aspect

Elevation

Aspect

.538

Elevation

.351

.453

.462

.572

Slope

.55o

.385

.344

.428

.513
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Slope, and SAR-Steep. The average measure of conflict agrees with the

separability measures and OCA only in ranking the first three sources (A/B

MSS, Elevation, and SAR-Shallow). In the multisource data classification with

this data set, the remaining sources (SAR-Steep, Aspect, and Slope) will be

considered as equally reliable as the 4th.

There are two problems in quantifying source reliability based on the

average measure of conflict. First, the values of the average measures of

conflict will vary depending on what kind of belief function is used in eq. (3.4.8).

However, as long as the belief function represents the body of evidence

properly, the ranking of the sources in terms of their relative reliabilities will

remain the same. Second, even the ranking of the sources depends on the

prior information regarding which is the most reliable source. For example, in

Table 3.4, if SAR-Shallow were assumed to be the most reliable, then the

second most reliable source would be SAR-Steep instead of A/B MSS.

One of the advantages of the measure of conflict is that it provides the

relative reliabilities between all pairs of sources. When the "most reliable

source" changes from one to another due to the meaning of the reliability in the

context of a problem, the measure of conflict gives the ranking of the sources

according to the new most reliable source.

Furthermore, the measure of conflict can be computed for test samples as

well as training samples. In the above case, there is not much difference

between the measures of conflict for the training samples and the entire sample

because the training samples are uniformly distributed over the entire sample.

On the other hand, when training samples are limited and poor representatives

of test samples, there may be difference between the measures of conflict

obtained from the training samples and from the entire sample.

Both the separability measures and the measure of conflict give

information for ranking multiple sources in the sense of their relative reliabilities,

but a quantitative method of computing the absolute reliabilities of the sources

is still unknown.

Once the relative reliabilities of the data sources are given, they are

included in the multisource data analysis by "discounting" belief functions

[Shafer (1976a)]. Suppose _ denotes the relative reliability assigned to a given
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source, where 0<o_<1. By discounting, the basic probability number of every

subset A of _ is reduced from _A) to (z._A) and the basic probability number

of _ increases from m(_) to _)+o_.

3.5. Summary

This chapter has focused on the construction of interval-valued belief

functions for statistical evidence and the quantitative representation of source

reliability. Belief functions can be obtained in the form of IV probabilities from

the supremum and infimum of a class of probability measures. Two models for

robust estimation of probability measure, the _-contamination model and the

total variation model, were introduced to formalize the class of probability

measures. Then the IV belief functions based on the Likelihood Principle were

constructed. Although they require some underlying assumptions (consonance

or partial consonance), they have mathematically simple and readily usable

formulas. The required assumptions are not difficult to satisfy in practical

applications of this approach.

In order to include the relative reliabilities of sources in a multisource

data analysis, the attempts to quantitatively represent the degree of reliability by

the average Jeffries-Matusita distance, the average Transformed Divergence,

and the average measure of conflict between pairs of sources were made.

Their performances were compared by applying them to an actual multisource

data set.

In the experiments described in Chapter 6, the belief functions based on

the Likelihood Principle will be implemented, and the multiple sources will be

ranked based on the average J-M distance and the average measure of conflict.

In this chapter, the contribution of this research is in the representation of

statistical evidence by IV probabilities such as consonant and partially

consonant IV probabilities. Theorems 3.1 and 3.2, Definition 3.3, and Lemma

3.3 are originally formulated and proved in this report.
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CHAPTER 4

COMBINATION OF BELIEF FOR STATISTICAL EVIDENCE

4.1. Introduction

To base inferences and decisions on all available information, it is

necessary to combine the information from various sources. The role of rules

for combining evidence is to integrate the conditional knowledge about states of

nature based on each body of evidence into combined knowledge based on the

total evidence. Combination rules may be formulated in various ways; they may

depend on the characteristics of the problem, the experience of the knowledge

engineer, and the mathematical theories on which the rules are founded.

Various procedures for the formation of a consensus of opinions have

been suggested in the group decision problems [French (1981), Genest (1986),

and Winkler (1968)], some on pragmatic grounds, others justified axiomatically.

The following formulas are most typical ones among them.

Consider the situation where there are m sources of information, each

providing its subjective probability _i (i=1 ..... m) over B. Here _i can be any kind

of additive probability measure according to the context of problems.

Linear Opinion Pool defines the overall probability measure _ as a

weighted mean of hi's:

m

_(A) = E?i.Tri(A)
i=1

for all Ae B (4.1.1)

where 7i

satisfying ___,_= 1.

(i = 1,..., m) are positive weights assigned to each
m

i=1

source and
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Independent Opinion Pool assumes that the information sources are

"independent" and defines the overall probability measure simply as a product
of the individual measures:

/7]

_(A) = 1<.[]-I/l;i(A)]
i=1

for all Ae B (4.1.2)

where _c is an appropriate normalizing constant so that _(-) become additive.

Logarithmic Opinion Pool is a generalization of the independent opinion

pool. The overall probability measure is given as:

m

n(A) = _:.[ ["[{zq(A)}m ] for all AEB (4.1.3)
i=1

where or.i is any positive real number representing the relative reliability of the ith

source.

A deficiency of the linear opinion pool is that the individual probabilities

do not reinforce the others. The combined measure given in (4.1.1) is always

between the maximum and the minimum values of _i,

min x.(A) < _:(A) < max /ri(A )
i=1 ..... m I -- --i=1 ..... m for all Ae B (4.1.4)

The other two schemes have the "zero probability property", viz.,

If /(i(A)=0 foranyi, then _(A)=0 (4.1.5)

which makes the combined measure too sensitive to a small probability

measure. More in-depth discussions are found in French (1985) and Berger
(1985).

In rule-based inferencing systems, several subjective Bayesian updating

rules have been proposed to modify the probabilities of hypotheses as each

piece of evidence is provided. These rules are derived by applying one or two

statistical independence assumptions to Bayes' rule and successfully used in
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rule-based expert systems such as PROSPECTOR [Duda et al. (1979)] and

MYCIN [Shortliffe (1976)]. However, there have been some controversies over

the inconsistency between the independence assumptions and their updating

rules.

During the last decade Dempster's rule has been receiving more

attention from many researchers in various areas of science and engineering. It

is a generalization of Bayesian inference, including the subjective Bayesian

updating rules as the special cases for which the domain-specific knowledge is

precise.

The objective of this chapter is to investigate the inferencing mechanisms

of the subjective Bayesian updating rules and Dempster's rule in combining

multiple evidence when they are formulated as set-theoretic functional

equations. They are given a behavioral interpretation in terms of the desirable

properties which agree with human intuition. The independence assumptions

underlying them and the robustness to small variations in probability measures

are studied.

4.2. Properties of Combination Rules

For computer-based, quantitative techniques of multisource data analysis

the rules for combining evidence must be formulated as functional equations

computing the degree of belief based on the total evidence from degrees of

belief based on each single piece of evidence.

As given earlier, _ consists of a finite number of exhaustive and mutually

exclusive events and B is a Boolean algebra of all subsets of _. Let E be a set

of multiple bodies of evidence { E 1, E 2 ..... E m } and B(AjlE i) = b i (i=1, ..., m)

denote the degree of conditional belief for Aj e B given a body of evidence E i.

Then a rule for combining evidence expresses the degree of belief based on

the total evidence, B(AjlEI&E2&...&Em), as a function on the set of evidence

given the knowledge of B(AjlEi) for i=1 ..... m. Several properties of combining

rules are proposed by Cheng and Kashyap (1986) to provide guidelines for

constructing the rules as numerical formulas. In this section those properties

are formally stated.
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Definition 4.1. Let F denote a function representing a rule for combining

evidence. Fis said to be "decomposable" if there exists a function f such that

F(bl ....,bm)=f(f(.., f(f(b I,th),%) ....),bin) (4.2.1)

wherefis called a "binary operator" of F.

In general, Fandf(if it exists) are assumed to be continuous except at

the endpoints. This corresponds to the idea that the human reasoning process
is not abrupt.

If we assume that the final degree of belief depends only on the set of

evidence and not on the order in which the pieces of evidence are combined,

different orderings of evidence in combination should produce the same result.

The properties in the following definitions are essential to any combination rule

for exchangeability of the order of evidence and for decomposability of its

numerical function into a binary operator.

Definition 4.2. Fis "commutative" if it has a binary operatorf such that

f (bi' bJ) = f (_, b_) (4.2.2)

for any pair of i, j (1 < i, j < m).

Definition 4.3. Fis "associative" if it has a binary operatorf such that

f ( f (b. bj ), bk ) = f (bi, f(bl, bk))

for all i, j, and k (1 < i, j, k < m).

(4.2.3)

In every numerical representation of belief, a stronger belief is

represented by a larger number. Imagine that two degrees of belief provided by

different pieces of evidence, say b i and bj, are to be combined respectively with

another degree of belief b k. Suppose b i > bj, i.e., b i represents a relatively

stronger belief than bi, then it is natural that the combination of b i with b k

produces a larger number than the combination of _ with b k. The next definition
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gives the mathematical expression of this property.

Definition 4.4.

the condition

for any bk.

F is said to be "monotonous" if its binary operator f satisfies

if _ 2 hi, then f(4, Lk) z f(bj, bk)
(4.2.4)

Monotonicity is a rather general property compared to commutativity and

associativity because it should hold even for combining functions which do not

have binary operators. It is true that when one piece of evidence is replaced by

one providing stronger belief, F should produce a larger value.

Definition 4.5. Fis "positively reinforcing" if

max {bi}F(bl,.-.,bm) > i=1 .....m

or its binary operatorf satisfies

f(b i, bj) -> max { b,, b]}

(4.2.5)

(4.2.6)

Definition 4.6. F is "negatively reinforcing" if

_ min {b} (4.2.7)F(bl,...,bm) < i=1 .....m

or its binary operatorf satisfies

f(b,, bj) < min { bi, b l }
(4.2.8)

Positive (Negative) reinforcement means that the belief based on the total

evidence is stronger (weaker) than the belief based on any single piece of

evidence.

In the following two sections, the definitions of desirable properties of a
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combination rule play a role of interpreting inferencing mechanisms of the

subjective Bayesian updating rules and Dempster's rule of combination.

4.3. Subjective Bayesian Updating Rules

The three different subjective Bayesian updating rules have been

obtained by applying one or two statistical independence assumptions to
Bayes' rule.

Global independence over E = { El, E 2.... , E m } is defined as:

m

P(EI&E2&... &E m) = 1-IP(Ei)
i=1

(4.3.1)

Conditional independence over Z: given a proposition is defined as:

m

P(EI&E2&... &E mIAj)=HP(EilAj) for all j=l .... ,n
i=1

(4.3.2)

Conditional independence over E given the negation of a proposition is
defined as:

m

P(E_&F'2&"" &Emir'j)= 1-I P(EiI_,j) for all j=l .... ,n (4.3.3)
i=1

Using Bayes' rule, the posterior probability of Aj given the combined
body of evidence can be written as

P(Ajl El&E2&... &Era)=
P(E1 &E2&...&E m JA j). P(Aj)

P(EI&E2&...&Era)
(4.3.4)

Under the assumption of conditional independence in eq. (4.3.2), the
Bayes' formula in eq. (4.3.4) can be written as:
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P(Ajl ElaE2a... &E_ =

m P(Aj i Ei)

P(Aj) 1-I P(Aj)i=1

n { mp(A [Ei) }P(Ak) I"I k
k=l i=1 P(Ak)

(4.3.5)

This rule has been used by Cheng and Fu (1985) in a rule-based reasoning

system for diagnosing diseases.

The global independence assumption in equation (4.3.1) together with

the conditional independence in equation (4.3.2) rewrites Bayes' rule as

m p(EilAi) fi p(AilEi)
P(Ai[ El&E2&... &Em) = H p(Ei ) = p(Ai)i=1 i=1

(4.3.6)

Swain et al. (1985) have used this formula to construct a global membership

function. Also, the rule for combining measures of belief and disbelief in MYCIN

has been obtained from the binary form (m=2) of eq. (4.3.6) after translating

probabilities to its own measures of belief and disbelief.

Also, applying both conditional independence assumptions to Bayes'

rule, we can derive the following combining function

IT/

1-[ P(Aj I Ei)
i=1

P(AjIEI&E2&-" &Em)= m m

1-'[ P(Aj IEi) + 1-I P(Aj I Ei )
i=1 i=1

(4.3.7)

which is the updating rule used in PROSPECTOR, a rule-based computer

consultant system intended to aid geologists in evaluating the favorability of an

exploration site for occurrences of ore deposits of particular types. Interestingly,
1

this rule is a special case of the rule in eq. (4.3.5) when P(Aj)=n for all j.

Nevertheless, it is more appealing because this rule expresses the combined

measure in terms of only the conditional probabilities of individual bodies of

evidence. Note that the rules expressed in eq. (4.3.5) and eq. (4.3.6) include

the effect of prior probabilities in combining bodies of evidence.
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All of the subjective Bayesian updating rules described in this section are

decomposable. The binary operator of each rule can be easily obtained by
setting m = 2. In the following, we will take a closer look at the characteristics of

the rule expressed in eq. (4.3.7).

For a subset A of _, set P(A/E1) = Pl and P(A[E2) = P2. Since P(.) is

additive, P(_,IEi) = l_Pi for i =1, 2. The binary operator of the rule in equation

(4.3.7) is given as:

fA(Pl, P2) (= P(A I El&E2)) = Pl"P2
Pl"P2 + (1-P1)'(1-P2)

(4.3.8)

The above binary operator has the following properties:

1

(1) Positively reinforcing when Pl, P2 -> 2, and negatively reinforcing when Pl,
1 1 1

P2 < _. Not defined in terms of reinforcement when Pl < _ and P2 > _, or pl
1 1

> _ and P2 < _.

1 1.
(2) When Pl = _-, fA(Pl, P2) = P2 ; 2 IS the identity of the binary operator. Since

1
the rule deals with additive probabilities, _ represents the total ignorance of

evidence for the rule.

(3) When Pl = 0 (or 1), ..fA(Pl, P2) = 0 (or 1) except P2 = 1 (or 0); 0 and 1 are the

annihilators of the binary operator, that is, when E_ provides complete

certainty either for A (Pl = 1) or for ,_ (Pl = 0), the other body of evidence

cannot affect the combined belief measure.

(4) JA(0, 1) and fA(1,0) are not defined; this rule cannot combine two bodies of

evidence which are completely contradictory.

Figure 4.1 is a graphical interpretation of the binary operator based on

set-theoretic operations. In the figure, the upper-left rectangle represents the

degree of belief for A based on the combined evidence while the lower-right

rectangle represents the degree of belief against A based on the combined

evidence. The upper-right and lower-left rectangles represent the measure

which fails to be committed to either A or _.

The question now is which independence assumption is empirically
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P(AIE2) = P2 P(AIEz) = 1- PZ

P(AIE1) = Pl

m

P(AIE1) = 1- p 1

A_A = A

Pl P2

m

AreA =

(1-Pl) P2

Ac'A =O

Pl (1-P2)

AriA =A

(1-pl)" (1-P 2)

Figure 4.1 Graphical Interpretation of Binary Operator of Subjective
Bayesian Updating Rule in Equation (4.3.7)
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more reasonable and yields a better updating scheme. Controversially, it has

been shown that there is inconsistency between some independence
assumptions and their updating rules. We will begin the discussion with the

following lemmas which were stated and proven by Pednault et al. (1981), and
Johnson (1986), respectively.

Lernma 4.1. If E2 consists of n (n > 2) mutually exclusive and exhaustive
n

propositions, i.e., if _ P(Aj) = 1 and P(A i & Aj) = 0 for i _ j, then equations (4.3.2)
j=l

and (4.3.3) together imply equation (4.3.1).

When n = 2 ( _ = { A, _ }), the above lemma does not hold.

Lernma 4.2. If _ consists of n mutually exclusive and exhaustive propositions,

where n > 2, and if equations (4.3.2) and (4.3.3) are assumed, then there is at

most one piece of evidence that produces updating for the proposition.

Lemma 4.2 says that under the above conditions regarding _, at most one

piece of evidence can alter the probability of any given proposition; thus,

although updating is possible, multiple updating for any of the propositions is

impossible. The following lemma is from Cheng et al. (1986).

Lemma 4.3. Suppose that _ = { A, f, }. If equations (4.3.1), (4.3.2), and (4.3.3)

are assumed, then there is at most one piece of evidence that produces
updating for each proposition.

As a consequence of the above lemmas, in order for probabilities of two

or more mutually exclusive and exhaustive propositions to be updated and

allow multiple pieces of evidence to influence a decision, one of the conditional

independence assumptions should be eliminated. In fact, Charniak (1983) and

Johnson recommend the updating scheme in eq. (4.3.5) for inference about any

number of mutually exclusive and exhaustive propositions.
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4.4. Dempster's Rule of Combination

Dempster's rule is a generalized scheme of Bayesian inference to

aggregate bodies of evidence provided by multiple information sources. Let m1

and m2 be the basic probability assignments associated respectively with the

belief functions Be_ and Be[2 which are inferred from two entirely distinct bodies

of evidence E 1 and E 2. For all A i, Bj, and ×k c _, Dempster's rule (or

Dempster's orthogonal sum) gives a new belief function denoted by

Bel= Be_ @ Bel2 (4.4.1)

The basic probability assignment associated with the new belief function is

defined as:

m,(Xk) = (1 - k) -1 _ nh(Ai).m2(B j) (Xk ¢ 0)

AinBj=Xk

(4.4.2)

where k is the measure of conflict between Bell and Bel2, as defined in

Definition 3.4.

Dempster's rule computes the basic probability of X k, m(Xk), from the

product of mI(A i) and m2(Bj) by considering all A i and Bj whose intersection is

X k. Once m is computed for every Xk c _, the belief function is obtained by the

sum of m's committed to X k and its subsets. The denominator (l-f0 normalizes

the result to compensate for the measure committed to the empty set so that the

total probability mass has measure one. Consequently, Dempster's rule

discards the conflict between E1 and E 2 and carries their consensus to the new

belief function.

There are several points of interest with regard to this rule. First, it

requires that the basic probability assignments to be combined be based on

entirely distinct bodies of evidence and refer to the same frame of discernment

_. Secondly, it is both commutative and associative. Therefore, the order or

grouping of evidence in combination does not affect the result, and a sequence

of information sources can be combined either sequentially or pairwise. Finally,

kin the above equation is the measure of conflict between E1 and E 2, which

represents the amount of the total probability that is committed to disjoint (or
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contradictory) subsets of _. If kis equal to one, this means that E 1 and E2 are

completely contradictory and the orthogonal sum of their basic probability
assignments does not exist.

To exhibit the properties of Dempster's rule, suppose that there are only

two focal elements A and ,_ in _ and the basic probability assignment mi based
on E i is given as:

mi(A) = Pi' _(_') = qi' _(_) = 1-Pi-qi for i = 1,2

where Pi + qi < 1, i.e., they are non-additive.

Then, the respective interval-valued belief function

supports A with [Pi, 1-qi], and _, with [qi, 1-Pi]. Dempster's rule produces the

new basic probability assignment m, and by equation (2.2.9) the support

function for A and Y_based on the total evidence is given as:

(4.4.3)

given Ei(i=l,2 )

Sp(AIEI&E2) -
p_"p2+Pl "( 1-p2-q2)+ (1-Pl -ql )'P2

1-Pl "q2-ql "P2

= 1 - (1-P1)'(1-P2)

1-Pl "q2-ql "P2 (4.4.4)

,5p(A I-_E1& E2) = q1"q2+ql ( 1-p2-q2)+(1 -Pl-q_ )'q>
1-Pl "q2-q 1"P2

(1-ql)'(1-q2)

1-Pl "q2-q 1"P2
(4.4.5)

Figure 4.2 shows the graphical interpretation of Dempster's rule for the above

case. The probability mass committed to _ represents the uncertainty

concerning the support for A and ,_. The conjugate plausibility function P/is

obtained by equation (2.2.14). In general, Dempster's rule has the following
properties:

(1) Commutativity and associativity.

(2) [Sp, ff'/]@[0, 1] = [Sp, P/J; [0, 1] plays the role of identity for the rule.
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m2(A) = P2 m2(A) = q2 m2(_ ) = 1-P2-q2

ml(A) = P 1

m I(A) = ql

m 1(_) = 1-pl-ql

AnA= A

Pl "P2

AriA = O

ql "P2

_nA = A

(1-pcql)'P2

AriA = O

Pl "q2

F

AriA = A

ql"q2 ql "(1 -p2-q2 )

f2c_f_ = D.

(1-P1-ql)'(1-P2-q2)

Figure 4.2 Graphical Interpretation of Dempster's Rule when _ = { A, A }



53

(3) When pi+qi = 1, i.e., they are additive, equation (4.4.4) is equal to equation

(4.3.8), and the resulting belief function becomes additive.

(4) For any interval [Sp, P_[0, 0], [Sp, P_@[1, 1]=[1,1], and for any interval [Sp,

P/_[1, 1], [Sp, P[J@[O, 0]=[0, 0]; [0, 0] and [1, 1] are annihilators for the rule.

(5) [0, 0]@[1, 1] is undefined; Dempster's rule cannot combine completely
conflicting bodies of evidence.

(6) The combined interval is no wider than any interval to be combined, i.e.,

(1-pl-ql).(1_P2_q2)
< 1-Pi-qi

1-p_ "q2-q 1"P2 for i= 1,2 (4.4.6)

Since the width of an interval-valued belief measure corresponds to the

measure of uncertainty, it seems intuitively reasonable that the value of the

measure of uncertainty decreases as the amount of evidential information
increases.

The only condition that Dempster's rule requires is that the bodies of

evidence to be combined must be entirely distinct. In the context of the problem

of multisource data classification, combining entirely distinct bodies of evidence

is considered as a fusion of the individual observations provided by

independent sensors. The meaning of independence here is that an

observation from one sensor does not have any effect on an observation from
any other sensor.

4.5. Robustness of Combination Rules

The previous two sections described the functional characteristics of the

subjective Bayesian updating rules and Dempster's rule in terms of the

desirable properties of combination rules. In this section, the binary operators

of Dempster's rule (eq. (4.4.4)) and a subjective Bayesian updating rule (eq.

(4.3.8)) are compared with respect to their sensitivity to small changes of the
initial belief measures to be combined.
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Suppose we are classifying a pixel denoted by a vector X into one of a

set of mutually exclusive and exhaustive classes, (01, (02, and (03, based on two

independent data sources. Let E 1 and E 2 denote the bodies of evidence

provided by the two data sources, and gl = {A 1, A 2, A3} denote the frame of

discernment, where A i represents the event of X being classified to (0i.

Suppose that the basic probability assignment numbers based on each data

source are given as:

ml(A1) = 8, ml(A 2) = 1-8-p, ml(A 3) = p (4.5.1)

and

m2(A1) = l-(5--p, m2(A 2) = (5, m2(A 3) = p
(4.5.2)

Note that the above measures are additive, i.e., there is no measure of

uncertainty. Hence, both data sources are believed to be completely reliable,

and the information provided by the data sources is assumed to be exact and

precise for representing the belief measures.

When 8 = 0 and 0 < p << 1, there is strong conflict between the bodies of

evidence provided by the data sources. The only agreement between them is

that A 3 is highly improbable. In other words, X is hardly believed to belong to

o 3. On the contrary, the equation (4.3.8) - recall that it is a special case of

Dempster's rule when the belief measures are additive - yields the combined

measures as:

re(A11 El&E2) = re(A21 El&E2) = 0, re(A3[ El&E2) = 1

without regard to the value of p. The result expresses that (03 is the only

possible class for X, which is completely against our intuition.

Now, in order to examine how sensitive the combination rule is to slight

changes of initial measures, let (5 be a non-zero small number. Then, we find

(5(I-8-p)

re(At1 El&E2) = m(A2l El&E2) = 2(5(I -8-p) + p2
(4.5.3)

P

m(A3l El&E2) = 2(5(1-8-p) + p2
(4.5.4)
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Table 4.1 shows the results of the equation (4.3.8) for various small values of (S
when p = 0.1.

Table 4.1 Result of Combination by Dempster's Rule for
Additive Belief Measures.

re(All E1 &E 2)

m(A2l E1 &E 2)

m(A31 EI&E 2)

(5=0.001

0.076

0.076

0.848

p=0.1

8= 0.01

0.320

0.320

0.360

5 = 0.05

0.447

0.447

0.106

By comparing the combined measures for (5= 0.001 and 0.05, we can draw a

conclusion that the extreme sensitivity may lead to totally different decisions

when the numerical representation of belief is coarse. Recall that the measures

of belief in the above example are additive. Will Dempster's rule show such

sensitivity when the measures of belief are subadditive?

When the data sources are not completely reliable, which is true in most

cases of real world data sources, the belief measures based on the partially

reliable sources include the measure of uncertainty. Suppose both data

sources are assigned the same amount of measure of uncertainty ix, that is,

m I ([2) = m2(_'2 ) =

where 0 < (:t < 1. (_ is assigned to the frame of discernment _ to represent the

partial ignorance of belief based on the incomplete data sources. Then, the

initial measures in (4.5.1) and (4.5.2) which were additive are reduced as:

ml(A1) = (1-(x)(5, ml(A2) = (l-(x)(l-8---p), ml(A3) = (1--(x)p (4.5.5)

and

m2CA1) = (1-a)Cl-8--p), m2(A2)= (l-e08, m2(A3) = (1-a)p (4.5.6)

Now, the belief measures become non-additive, and they are represented in
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terms of interval-valued probabilities in Table 4.2. In this particular case, since

all the focal elements are singleton, the width of their IV belief measures is the

same.

Table 4.2 Interval-valued Belief Measures after Combination

by Dempster's Rule for Non-additive Belief Measures.

Sp

A 1 (1-o08

A 2 (l-ot)(1-f-p)

A 3 (1-a)p

E1

(1-o08+ct

(1-c0(1-8--p)+_

(1-o0p+ot

Sp

(1-o0(1-8-p)

(1-(:z)8

(l-(x)p

E2

(l-ot)(1-8-p)+ot

( 1-o08+oc

(l-o0p+ot

Dempster's rule yields the new basic probability assignment as:

re(All El&E2)= re(A21 El&E2) = (1 - fO

re(A31 E1 &E2) =
r(1-ot){ (1-o0p+ 2or}

(1 -fO

(4.5.7)

(4.5.8)

and

oc2 (4.5.9)
m(_l El&E2) - (1 - fO

where k= (l-c02{ 1-p+28(p+&-1 )}.

Let ot = 0.1, which means that the data sources are highly reliable but still

incomplete. For 8 = 0 and p = 0.1, the combined measures are:

re(All El&E2) = re(A21 El&E2) = 0.409, re(A31 El&E2) = 0.132
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Compared to those which are additive, the non-additive measures, after being

combined by Dempster's rule, are more in accordance with human intuition.

Table 4.3 shows the results of Dempster's rule combining non-additive
measures for various small values of 5.

Table 4.3 Result of Combination by Dempster's Rule for
Non-additive Belief Measures.

re(All EI&E 2)

re(A21 E1 &E 2)

re(A31 E 1&E 2)

m(_[ El&E2)

_5= 0.001

0.409

0.409

0.131

0.051

tZ = 0.1 p=O. 1

_5= 0.01

0.414

0.414

0.123

0.049

_i = 0.05

0.432

0.432

0.098

0.038

By assigning a small amount of uncertainty to the data sources, we can avoid

the extreme sensitivity of Dempster's rule to slight changes of measures

provided by conflicting bodies of evidence.

Since the problem of extreme sensitivity of Dempster's rule was exposed

by Zadeh (1979), Dubois and Prade (1985) proposed as an alternative a

possibilistic rule of combination based on the theory of possibility which is

related to the fuzzy set theory. Zadeh and Dubois et al. insist that the extreme

sensitivity of Dempster's rule in combining additive probabilities is the effect of

the normalization in its denominator. They think that the normalization

suppresses an important aspect of information obtained from the conflicting

bodies of evidence, so that Dempster's rule may yield highly counterintuitive

results. According to the above example, however, the cause of the extreme

sensitivity lies in incorrect representation of belief, not in Dempster's rule itself.

Recall that the frame of discernment consists of mutually exclusive and

exhaustive hypotheses. If two sources were completely reliable, there might be

little conflict between the bodies of evidence provided by them. Conversely, if

there were strong conflict between bodies of evidence, the sources providing
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the evidence could not be completely reliable, either or both of them should

have non-zero measure of uncertainty. In conclusion, interval-valued

probabilities are more adequate than conventional additive probabilities to

represent belief.

4.6. Summary

In this chapter, after defining desirable properties for combination rules to

be formulated as functional equations, the inferencing mechanisms of

subjective Bayesian updating rules and Dempster's rule were examined in

terms of their properties. The comparison revealed that Dempster's rule is a

more general scheme to combine bodies of evidence providing the belief

functions represented by interval-valued probabilities. It has been observed

that in combining conflicting bodies of evidence, Dempster's rule produces

more robust and consistent combined belief measures when the belief

measures are interval-valued.

In this chapter, the contributions of this research are the formal definitions

of the desirable properties of combination rules, interpretations of the

inferencing mechanisms of the existing combination rules, and the analysis of

the robustness of Dempster's rule in the aspect of its differential behavior

according to slight changes of initial belief measures.
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DECISION

CHAPTER 5

MAKING BASED ON INTERVAL-VALUED
PROBABILITIES

5.1. Introduction

Making a decision is the last step before evaluating the performance of a

classifier in any pattern recognition problem. Over the past three decades,

statistical decision theory has played an important role in the decision process

of statistical pattern recognition techniques.

In conventional statistical methods for pattern recognition where

statistical information is represented by point-valued probabilities, there is only

one decision rule to use in deciding whether or not a given pattern belongs to

some prespecified class of patterns. The decision rule gives an estimate of the

unknown, true class of the pattern, and the estimate varies depending on the

criterion underlying the decision rule. For example, the "Bayes decision rule" is

devised in such a way that the "average risk" is minimized. The Maximum

Posterior classification, which is the most common classification method in

remote sensing, uses a "Bayes decision rule with 0-1 loss function."

In the previous chapters, representation and combination of statistical

evidence in the form of interval-valued probabilities were studied. Although

interval-valued probabilities provide an innovative means for the representation

of evidential information, they make the decision process rather complicated

and entail more intelligent strategies in making decisions. Based on the

evidential interval bounded by degrees of support and plausibility, one has

more than one choice for a decision rule. One can make a decision either

based on any one of support or plausibility, or based on their average.

This chapter presents an account of basic elements in the decision

theory for pattern recognition based on interval-valued probabilities. It will be

noticed that under a certain condition those basic elements are a generalization
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of the elements of Bayesian decision theory. This chapter also formalizes the

decision-making process and develops decision rules for the evidential
intervals.

5.2. Interval-Valued Expectations

Let [L, U] be an interval-valued probability defined in the Boolean

algebra B of subsets of ,Q, and V denote a real-valued function defined over

= {co}. Dempster(1968) defines an "upper distribution function" and a "lower

distribution function" respectively as:

F*(v) = U({(o I V(e)) < v})

F,(v) = L({coI _<v})
for --oo < v < oo (5.2.1)

The pair [F*, F,] defined above has the following properties:

(i) Both are nondecreasing, i.e.,

if v 1 < v2 then F*(v 1) < F*(v2)

(ii) Both are continuous from the right, i.e.,

Fore>0, lim F*(v+e) = F*(v) and
_--->0

(iii) F*(+oo) = F,(+oo) = 1, F*(-_o)= F,(-oo) = 0

(iv) If F*(v0)= 0 (F,(v0)= 0)

then F*(v)=0(F,(v)=0) for everyv<v o

(v) F*(v)_>F,(v) for-oo<v<oo

The proof of the above properties is trivial.

properties of the ordinary distribution function.

proofs.

and F,(v1) _ F,(v 2) (5.2.2)

lim F,(v+e) = F,(v)
_0 (5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(i) - (iv) are the same as the

Refer to Papoulis(1984) for their

And (v) is a direct consequence of eq. (2.4.3).
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Further,

expectation" as:

Dempster defines his "upper expectation" and "lower

E*(V)= Iv dF,(v)
--oO

Oo

E,(V) = Iv dF*(v)
--oo

(5.2.7)

Note that the upper and lower stars are interchanged. It is necessary in order to

keep the relation E*(V) > E,(V). For any real-valued functions V and W

defined over _, E* and E, have the following properties:

(i) E*(V) _>E,(V)
(5.2.8)

(ii) If V(_) >-- W(o) for all (o_

E*(V) > E*(W) and E,(V) > E,(W)
(5.2.9)

Dempster's upper and lower expectations generalize the concepts of

upper and lower probabilities. Speaking in detail, let Z A be the indicator

function of Ac_, i.e.,

1 for o)_ AZA(°)= 0 otherwise
(5.2.10)

Then, by the above definitions and the conjugate relationship of 'u and L

._o 1

E*(ZA) = I z dF,(z)= I z'L({m[ZA(C°)<z}) dz
-,x, 0

= L(_)- L(_,) = 1 - L(_,)= 'U(A)

400 1

E*(ZA) = I z dF*(z) = I z'U({OIZA(°)--z}) dz
._ 0

(5.2.11)

= (t(_) - '/./(_,) = 1 - '/I(_,) = L(A)
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For pattern recognition problems, it seems natural to define upper and

lower probabilities respectively by upper and lower envelopes, i.e., the

supremum and the infimum of a certain class of probability measures as

expressed in Definition 2.2. As mentioned earlier in section 2.4, the envelopes

are a subclass of the axiomatically defined interval-valued probabilities. Also, if

L is 2-monotone and u is 2-alternating, then they are envelopes.

Suppose that L and u are given as

£._A) = inf { u(A)" u e P}

U(A) = sup { _(A)" _ _ P}
for A_ B (5.2.12)

where P is the class of the probability measures dominated by u. Then, the

following lemma is proved by Wolfenson and Fine (1982).

Lemma 5.1. For an interval-valued probability [L, U], the upper and lower

expectations can be given as:

E*(V) = sup E=(V)
/rE P

E,(V) = inf En(V )
/_E P

(5.2.13)

iff L is 2-monotone and u is 2-alternating, where V is a real-valued function

over _ and E_(V) is the expected value of V with respect to the probability
measure _.

The upper and lower expectations in (5.2.13)

properties as well as the properties in (5.2.8) and (5.2.9):

(iii) E,(V) < E_(V) < E*(V) for any _ e P,

(iv) For any nonnegative function W over _,

E,(a+bW)={a + bE*(W) if b > 0
+ bE,(W) if b < 0

have the following

(5.2.14)

(5.2.15)
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a + bE,(W) if b -> 0E,(a+bW) =
a + bE*(W) if b < 0

(5.2.16)

where a and b are constants.

This section introduces two different definitions of the interval-valued

expectations; one which applies to any system of interval-valued probabilities,

and the other which applies only to a system of 2-monotone and 2-alternating

interval-valued probabilities. In general, the two definitions do not coincide in a

class of all sets of probability measures over B. Dempster (1968) already

argued that for a general convex set P, it can happen that

OO

I v dF,(v) < inf En(V ) (5.2.17)
gE P

--0,0

The second definition is not only unapt to a general system of interval-valued

probabilities but also computationally intractable. For the expectations in eq.

(5.2.13) to be useful, an explicit expression of _ in P must be available.

5.3. Decision Rules based on Interval-Valued Probability

Consider a basic classification problem where an arbitrary pattern xe X

from an unknown class is assigned to one of n classes in _. Let ;L((.0ilo)j) be a

measure of the "loss" incurred when the decision o)i is made and the true

pattern class is in fact o_j, where i, j = 1, ..., n. Also, let &(x) denote a decision

rule that tells which class to choose for every pattern x. Using the upper and

lower expectations in eq. (5.2.7), the "upper expected loss" and the "lower

expected loss" of making a decision d_(x)=_ are obtained as:

n

_i(x) = _ ;L(_i I _j) Ux(@
j=l

(5.3.1)

n

/.i(x) = _, ;_(coil col) Lx(0Oj)

j=l
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where u x and Lx are respectively the upper and the lower probabilities for x

being actually from coj.

Based on the interval-valued expected losses, the most desirable

decision rule is the one which has the upper expected loss less than the lower

expected losses of the others, i.e.,

_)(x) = _i if fi(x) < /.j(x)

This rule is called an "absolute rule."

for j=l ,..., n (5.3.2)

The "Bayes-like rule" is the one which minimizes both the upper and the
lower expected losses, i.e.,

_)(x) = _ if _'i(x) < rj(x) and /,i(x) </,j(x)

In particular, when 7. is the "0-1 loss function", i.e.,

for j=l ,..., n (5.3.3)

;L(_(x)fo)j) =t: if _)(x) = (oj
if _(x) _ coj

the interval-valued expected loss in eq. (5.3.1) is simplified as:

(5.3.4)

n

= ,T_,
j=l

n

/.i(x) = T. c,,(coj)-
j=l

(5.3.5)

Since the first terms in the right-hand sides are constant for i=1 ..... n,

minimizing both _(x) and /,i(x) corresponds to maximizing Ux((Oi) and z..x((oi).

Hence, the decision rule in eq. (5.3.2) becomes

• (x)=
if Ux(O_)> Ux(_) and _(e)i)_>_(_) for j=l .... , n (5.3.6)

A problem with the above decision rules is that there does not always

exist co which satisfies the condition in eq. (5.3.2) or (5.3.3), which can lead to

ambiguity. In comparing a pair of the interval-valued expected losses, there are
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three different kinds of relationships distinguished by their relative locations:

(1) disjoint intervals;

_i(X) > f_i(X) > _j(X) > /_j(X)

(2) overlapped intervals;

(3)

(5.3.7)

_(x) > rj(x) > f_i(x) > /_j(x) (5.3.8)

nested intervals;

ri(x ) > rj(x) > _j(x) >_ f_i(x) (5.3.9)

The following example illustrates these intervals.

Example 5.1. Let _ -- {0) 1, (02, 0)3, 0)4}- [Lx, Ux] denotes the interval-valued

probability function of subsets of _ given a pattern x. Suppose that the basic

probability assignment tmx of [£x, Ux] is given as

rex({0)1}) = 0.2 rex({0)2}) = 0.3 rex({0)1, 0)3}) = 0.34 rex({0)2, 0)4}) =0.16

and rex(A) = 0 for any other subsets A of _. Then, the interval-valued

probabilities of the singletons are obtained as

{0)1} {(02}

Lx 0.2 0.3

Ux 0.54 0.46

{0)3} {0)4}

0 0

0.34 0.16

For the 0-1 loss function, the expected loss interval of 0)2 is nested in 0)1's, 0)1 is

overlapped with 0)3, and 0)4 is disjoint with respect to 0)1 and 0)2. The Bayes-like

rule does not produce a decision.

The above example shows a simple case where the Bayes-like decision

rule leads to ambiguity. In such an ambiguous situation, one may withhold the

decision and wait for a new piece of information. Otherwise, the ambiguity may
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be resolved by resorting to the following rule, so-called "minimum average
expected loss rule":

_i(x) + (,i(x) _(x) + /.j(x) for j=l,., n (5.3.10)_)(x) = e_ if 2 < 2 "'

For the 0-1 loss function, this rule is called "maximum average probability rule",

and the decision is made according to

_)(x) = e)i if Ux(e)i) + Lx(_i) Ux(e)J) + Lx(_J)
2 > 2 for j=l,..., n (5.3.11)

As an alternative to the absolute rule and the Bayes-like rule, there are

two other rules by which a decision is made according to individual measures of

the interval, for instance, either the upper expected loss or the lower expected
loss:

(1) minimum upper expected loss rule:

_(x)=_ if _(x) < _(x) for j=l .... , n (5.3.12)

For the 0-1 loss function, this rule may be renamed "maximum upper

probability rule" or "maximum plausibility rule", and the decision is made

according to

_)(x)=_ if Ux((_)> Ux(e)j) for j=l ..... n (5.3.13)

(2) minimum lower expected loss rule:

_)(x) = _ if /,i(X) _</,j(X) for j=l .... , n (5.3.14)

For the 0-1 loss function, this rule is called "maximum lower probability

rule" or "maximum support rule", and the decision is made according to

_(x)=_ if _(_i)>Lx(_j) for j=l ..... n (5.3.15)

Although the above two rules always produce decisions and there is no

ambiguous situation in making a decision according to the rules, they do not

utilize all of the information represented by the IV probabilities. The
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performance of these rules will be compared with the minimum average

expected loss rule in the next chapter by applying them to problems of ground-
cover classification based on remotely sensed and geographic data.

5.4. Summary

The purpose of this chapter was to formalize the decision-making

process for any system of interval-valued probabilities. In particular, the

process was considered from the viewpoint of statistical decision theory.

First, two different definitions of interval-valued expectations were

studied, and their statistical properties were compared with those of the ordinary

expected value. Then the absolute rule and the Bayes-like rule for evidential

intervals were developed based on the general interval-valued expectation.

Since these rules are not always satisfied, they may require an extra step to

resolve ambiguous situations. In order to resolve the ambiguous situations, this

chapter proposed the minimum average expected loss rule. As alternatives to

the absolute rule and the Bayes-like rule, the minimum upper expected loss rule

and the minimum lower expected loss rule were proposed.

While the absolute rule and the Bayes-like rule make decisions based on

both the upper and the lower expected losses, the minimum upper expected

loss rule and the minimum lower expected loss rule make decisions based on

either the upper or the lower expected loss. In the evidential reasoning, the

lower probability and the upper probability represent respectively the minimal

and the maximal degree of belief. Hence, the minimum lower expected loss

rule may be chosen when the decision process needs to be conservative; and

the minimum upper expected loss rule may be chosen when the decision maker

is confident about the information represented by IV probabilities.

In this chapter, the contribution of the research is in the formal

development of the decision-making process and the decision rules for interval-

valued probabilities.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1. Introduction

In this chapter, the methods presented in this report are applied to

problems of ground-cover classification for multispectral data combined with

other geographic data. The multisource data (MSD) classification based on the

evidential reasoning (ER) method is implemented as the following procedure:

In the training stage,

1. Compute the global correlation coefficient matrix of multisource data and

reform the data set if necessary. Throughout the experiments, the global

correlation information will be used to confirm the "distinctness" of bodies of

evidence as required by Dempster's rule.

.

3.

For each class, select training pixels and compute statistics for each source.

Compute the separability measures of each source and the average

measures of conflict between pairs of the sources as defined in Section 3.4.

Rank the data sources and assign a degree of reliability to each source.

The steps in the test stage classifying "unknown" pixels will be described by

considering an actual problem of classifying a test pixel to one of the classes in

= {8)1, 0)2, 0)3, 0)4} based on two data sources denoted by $1 and S 2.

xi : Test vector representing the test pixel obtained from Si (i=1, 2).

o_i : Source reliability of Si, 0 _<(zi < 1.

pcoj(xi) • Conditional probability density of x i given 0)j.

: Basic probability assignment based on Si.

m: Basic probability assignment based on $1 and $2.
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5p: Support function based on S1 and S2.

T[: Plausibility function based on S i and S 2.

Suppose that pcoj(xi) for i=1, 2 and j=l ..... 4 are obtained such that

po_(xl) _>p_2(xl) _>p_o3(xl)->&o4(xl)

Po_2(x2)->P_3(x2)-&ol(x2)->po_4(x2)

(A) Using the consonant belieffunctions:

The focalelements based on $I are {001},{(oi,002},{001,002,003},and £2.

The focalelements based on S2 are (002},{002,003},{002,003,001},and _.

I. Compute _(A) and m2(B) by using eq. (3.3.9),where A and B denote the

focalelements of $I and $2, respectively.

2. Multiply111iby o_iforthe subsets ofD, and add _ito _(_).

3. Compute m = _E_m 2 by using eq. (4.4.2).

4 For each singleton00i,compute

Sp({e_})= m({00i} ) and P/{{_})= _ re(A)

5 Classifythe testpixelto a classaccording to one ofthe decisionrulesfor

IV probabilitiesinChapter 5.

(B) Using the partiallyconsonant belieffunctions:

Based on the relationinthe hierarchicalstructureof the classes,suppose

that_ has a partition({001,002},{0)3,004}}.

The focalelements based on $I are {001},{001,002},{003},and {003,004}.

The focalelements based on S2 are {0)2},(002,001},{003},and {0)3,004}.

1. Compute ml(A ) and m2(B ) by using eq. (3.3.10) and (3.3.11), where A

and B denote the focal elements of Sl and S2, respectively.

2. Multiply mi by or,i for the subsets of C2, and add czi to _(C2).

3. Compute m = _m 2 by using eq. (4.4.2).
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4 For each singleton o)i, compute

Sp({_}) = m ({_}) and PZ({_}) = _ m(A)
An{o)i}_O

5 Classifythe testpixelto a class according to one of the decisionrulesfor

IV probabilitiesin Chapter 5.

Figure 6.1 is the block diagram of for classifying a pixel in the MSD classifi-

cation based on the ER method.

The experiments have been performed over three different image data

sets. Table 6.1 shows the names and types of data sources of the multisource

data sets. More detailed descriptions will be given in the following sections.

Each data set also has a geometrically registered, digitized ground truth map as

a reference based on which the accuracies of all subsequent classifications will

be evaluated.

The next section presents the experimental results of the proposed

method applied to the Anderson River data set. The intention of the experiment

is to assess the ability of the method in capturing and utilizing the information

obtained from topographic data sources as well as multispectral data sources.

In Section 6.3, the method is applied to the Indiana agricultural area data set

which contains only a single multispectral data source. The purpose is to show

the possibility that the MSD classification based on the evidential reasoning

method can overcome the effects of the Hughes phenomenon [Hughes (1968)]

which results in lowered classification accuracy for high-dimensional data with

limited number of training samples. The goal is to show that improved

classification can be obtained by decomposing a high-dimensional data source

into smaller and more manageable pieces and treating them as multiple data

sources. The possibility becomes more concrete in Section 6.4 where the

method is applied to a simulated High Resolution Imaging Spectrometer

(HIRIS) data set which is composed of 201 bands.

In every application, the classification accuracies of the MSD classifica-

tion are compared with those of Maximum Likelihood (ML) classifications based

on the stacked vector approach. Since the stacked vector approach treats
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compound vectors as data from a single source, the comparison of the MSD

and the ML classifications will assess the advantages and the disadvantages of

the multisource data analysis approach compared to a standard single source

analysis approach used in remote sensing.

Table 6.1 Multisource Data Sets.

Name

Anderson River Data

Types of Data Sources
I

Airborne MSS, SAR, Elevation, Slope, Aspect

Indiana Agricultural Area Airborne MSS

Data

Finney County Data HIRIS

6.2. Classification of Multispectral Data combined with Topographic

Data

The Anderson River data set* used in the first experiment consists of 3

multispectral data sources (optical and radar) and 3 topographic data sources.

Table 6.2 describes the types of data sources for the first experiment. The

image of this data set consists of 256 lines by 256 columns and covers a

forestry site around the Anderson River area in British Columbia, Canada.

Source 1 is 11-band Airborne Multispectral Scanner data (A/B MSS). Sources

2 and 3 are Synthetic Aperture Radar (SAR) imagery in Shallow mode and

Steep mode, respectively. The column "spectral band" for sources 2 and 3

describes the band and the transmit and receive type of SAR images. For

example, XHV means that the image is obtained in X-band (X=3cm) of the

microwave region by horizontal polarization transmit and vertical polarization

receive. Sources 4 - 6 provide digital terrain data obtained as follows:

* The SAR/MSS Anderson River data set was acquired, processed and loaned
to Purdue University by the Canadian Center for Remote Sensing, Department
of Energy, Mines and Resources, of the Government of Canada.
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Table 6.2 Description of Anderson River Data Set.

Source

Index

2

3

4

5

6

Data

A/B MSS

SAR

SAR

Topo-

graphic

Spectral

Visible

Near IR

Thermal

Shallow

Steep

Elevation

Input
Channel

1

2

3

4

5

6
7

8
9

10

11

Spectral
Band(l_m)

.38 - .42

.42 - .45

.45 - .50

.50 - .55

.55 - .60

.60 - .65

.65 - .69

8-14

XHV

XHH

LHV

LHH

XHV

XHH

LHV

LHH
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a) digital elevation model (DEM)

gray level = {elevation (in meters) - 61.996} + 7.2266

b) digital aspect model (DAM)

gray level = aspect (in degrees) + 2

c) digital slope model (DSM)

gray level = slope (in degrees)

Table 6.3 lists the information classes in the area, and Figure 6.2 shows

the ground truth map. More than three quarters of the area is covered by mixed

forestry. The information classes were defined based on a forestry map, and it

has been observed that some of the classes are very difficult to classify
accurately. In this experiment, 6 of the more separable classes were selected,
and these are listed in Table 6.4. Figure 6.3 displays the test areas of the 6

classes over the enhanced A/B MSS image. Some of the field labels are not

readable. However, they can be confirmed by the ground truth map in Figure

6.2. Figures 6.4 and 6.5 are Synthetic Aperture Radar imagery respectively in
Shallow and Steep mode, and Figures 6.6 through 6.8 are the digital terrain
imagery of the data set.

Table 6.5 is the global statistical correlation coefficient matrix among the
data sources. Correlation coefficients between pairs of variables from different

sources are generally quite low compared to those from the same source.

When the data can be assumed to be normally distributed, their uncorrelated-

ness implies statistical independence. In the experiments, we treat the data

sources (including the topographic data sources) which have relatively low

correlation as "globally independent" in order to assume that they reasonably
closely satisfy the "distinctness" of bodies of evidence required by Dempster's
rule.

In the experiment with the Anderson River data set, 100 pixels per class

were used for training data, which is between 4% and 8% of the total pixels of
the classes in the test fields. The training samples are uniformly distributed over

the test fields so that they may be considered as good representatives of the
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Class

Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Total

Table 6.3 Information Classes in Anderson River Data Set.

Cover

Types

Douglas Fir (DF) 1
DF 2

DF 3

DF 4

Bare Soil, Slides

DF+Other Species 1

DF+Other Species 2

DF+Other Species 3

DF+Lodgepole Pine 1

DF+Lodgepole Pine 2
DF+Cedar 1

DF+Cedar 2

Lodgepole Pine
Hemlock+Cedar

DF+Hemlock

Hemlock+DF 1

Hemlock+DF 2

Rock, Talus

Forest Clearings

Tree

Sizes

> 40m

31 - 40m
21 - 30m

10 - 20m

> 40m

31 - 40m

21 - 30m

31 - 40m

21 30m

> 40m

31 - 40m

10 - 20m

31 - 40m

31 - 40m

31 - 40m

21 - 30m

No. of

Pixels

1946

13158

6576

1045

110

1973

5761

13O9

510

5636

2483

2895

113

3173

2961

825

456

1982

12624

65536

% of

Total

2.97

20.08

10.03

1.59

0.17

3.01

8.79
2.00

0.78

8.60

3.79

4.42

0.17

4.84

4.52

1.26

0.70

3.02

19.26

100.0
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Figure 6.13 Ground Truth Map of Indiana Agricultural Area Data Set.





Table 6.4 Information Classes for Test of Anderson River Data Set.

Class

Index

2

3

7

10

14

19

Total

Cover

Types

Douglas Fir 2 (df2)

Douglas Fir 3 (dr3)

DF+Other Species 2 (df+os2)

DF+Lodgepole Pine 2 (df+lp2)

Hemlock+Cedar (hc)

Forest Clearings (fc /

Tree

Sizes

31 - 40m

21 - 30m

31 - 40m

21 - 30m

31 - 40m

No. of

Pixels "

2246

1501

1352

1589

1587

2064

10339

%of

Total

21.72

14.52

13.08

15.37

15.35

19.96

100.0

Figure 6.3 Test Areas over Histogram Equalized A/B MSS
(Channel 10) Image of Anderson River Data Set.
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Figures 6.4 Histogram Equalized SAR-Shallow mode (LHH)
Image of Anderson River Data Set

Figures 6.5 Histogram Equalized SAR-Steep mode (LHH)
Image of Anderson River Data Set
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Figure 6.6 Digital Elevation Image of Anderson River Data Set.

Figure 6.7 Digital Aspect Image of Anderson River Data Set.
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Table 6.5 Statistical Correlation Coefficient Matrix of Anderson River Data Set.

1

2

3

4

A/B 5

MSS 6

7

8

9

10

11
=, " ii i i

i|l

A/B MSS

1 2 3 4 5 6

1.000 0.815 0.753 0.709 0.670 0.633

1.000 0.956 0,933 0.905 0.882

1.000 0.975 0.961 0.955

1.000 0.996 0.984

1.000 0.992

1.000

7 8 9 10 11

0.626 0.573 0.459 0.520 0.593

0.875 0.686 0.505 0.563 0.747

0.951 0.677 0.465 0.516 0.792

0.981 0.744 0.530 0.570 0.765

0.990 0.742 0.526 0.562 0.761

0.998 0.672 0.442 0.477 0.760

1.000 0.684 0.454 0.490 0.773

1.000 0.926 0.956 0.617

1.000 0.959 0.464

1.000 0.532

1.000

Po



SAR

SHAL

SAR

STEEP

LHH

LHV

XHH

XHV

LHH

LHV

XHH

XHV

Aspect

Eleva

Table 6.5, Continued.

SAR SHALLOW

LHV XHH XHV

0.323 0.447 0.316

1.000 0.312 0.426

1.000 0.326

1.000

i

LHH

1.000
LHH

0.086

0.161

0.007

0.161

1.000

SAR

LHV

0.097

0.164

0.085

0.166

0.348

1.000

STEEP TOPOG RAPHIC

XHH XHV Eleva SIo

0.147 0.143 0.114 -.027 -.006

0.187 0.208 0.106 -.033 0.027

0.105 0.104 0.033 -.177 0.022

0.201 0.216 0.082 -.062 0.046

0.472 0.378 0.094 0.101 0.131

0.338 0.558 0.150 -.054 0.064

1.000 0.391 0.139 0.131 0.124

1.000 0.175 0.027 0.072

1.000 0.127 -.117

1.000 -.023

1.000

Oo
GO



A/B

MSS

1

2

3

4

5

6

7

8

9

10

11

Table 6.5, Continued.

SAR SHALLOW

LHH LHV XHH XHV

0.074 0.094 0.102 0.088

0.082 0.105 0.107 0.097

0.075 0.103 0.088 0.087

0.074 0.102 0.082 0.087

0.069 0.099 0.070 0.082

0.060 0.089 0.052 0.070

0.062 0.093 0.051 0.073

0.103 0.147 0.127 0.139

0.099 0.145 0.135 0.141

0.108 0.158 0.136 0.154

0.092 0.131 0.089 0.110

SAR STEEP

LHH LHV XHH XHV

-.123 0.008 -.193 -.035

-.117 0.041 -.190 -.005

-.099 0.061 -.169 0.017

-.081 0.076 -.140 0.038

-.072 0.081 -.128 0.045

-.065 0.078 -.122 0.044

-.065 0.079 -.121 0.047

-.074 0.096 -.101 0.074

i-.066 0.086 -.079 0.069

-.076 0.083 -.100 0.068

-.084 0.047 -.152 0.014

r

TOPOGRAPHIC

Aspen Eleva Slope

-.076 -.589 -.039

-.063 -.546 -.055

i-.041 -.424 -.061

-.031 -.333 -.071

-.024 -.271 -.074

-.013 -.217 -.066

-.009 -.205 -.067

-.034 -.327 -.107

-.036 -.320 -.100

-.042 -.365 -.106

-.072 -.341 -.066

Co
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Figure 6.9 Histogram of Anderson River Topographic Data (Total Area).
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total samples. As we can observe in Figures 6.9 through 6.12, some of the

classes defined in Table 6.4 cannot be assumed to be normally distributed in

the topographic data. Thus, it was decided to adopt a nonparametric approach

such as the "Nearest Neighbor" (NN) method [Fukunaga (1972)] in computing
probability measures while the optical and radar data sources were assumed to

have Gaussian probability density functions. Table 6.6 compares the overall
classification accuracies obtained by the ML method with the Gaussian

assumption and k-NN method for the individual topographic data sources. The

results show that the topographic data are information-bearing in the sense of

classification and suggest that the topographic data sources, especially
Elevation, should be included in the classification. Although the k-NN method

results in various classification accuracies for different k's, it always gives higher
accuracies than the ML method especially for the training data. In the MSD
classification, interval-valued belief functions for the bodies of statistical

evidence provided by these topographic data sources were constructed from
the likelihood functions obtained by the 2-NN method.

Table 6.6 Overall Classification Accuracy (%) obtained by ML
Method and k-NN Method for Topographic Data Sources.

Samples

Training

Testing

Method

ML

1-NN

2-NN

Elevation

45.83

67.00

66.67

5-NN 65.50

ML 42.64

1-NN 45.33

2-NN 46.79

5-NN 45.03

Aspect

30.33

50.00

47.63

44.50

32.06

35.63

38.59

35.29

Slope

29.17

48.67

46.50

45.83

30.72

34.51

37.38

36.19
.
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Table 6.7 Average Measures of Conflict between Pairs of Sources using
Partially Consonant Belief Function for Training Samples.

A/B MSS

SAR
Shallow

SAR

Steep

Aspect

Elevation

SAR
Shallow

.362

SAR

Steep

.402

Aspect

.390

Elevation

.343

Slope

.417

.328 .384 .391 .424

.402 .387 .433

.397 .395

.410

Table 6.8 Average Measures of Conflict between Pairs of Sources using
Partially Consonant Belief Function for All Samples.

A/B MSS

SAR
Shallow

SAR

Steep

Aspect

Elevation

SAR
Shallow

SAR

Steep

.411

Aspect

.402

Elevation

.352.375

.336 .407 .384 .429

.413 .401 .446

.399 .382

.413

Slope

.421
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In order to rank the sources by their reliability, the average J-M distance

and the average Transformed Divergence of each source were calculated and

compared with the overall classification accuracy obtained by the ML method

over the training samples (Table 3.2). We also computed the average
measures of conflict between pairs of the sources using the consonant belief

function (Tables 3.3, 3.4) and the partially consonant belief function (Tables 6.7,

6.8). Assuming that A/B MSS is the most reliable in the sense of classification,
all the measures agree that Elevation and SAR-Shallow are the 2nd and the

3rd, respectively. They do not agree at all for the remaining sources. In the
multisource data classification with this data set, the remaining sources have

been considered as equally reliable.

For the purpose of comparison, the ML classification based on the

stacked vector approach was carried out for various sets of the data sources,

adding one source at a time to the A/B MSS data in the order Elevation, SAR-
Shallow, SAR-Steep, Aspect, and Slope. Then the MSD classification was

performed using different combinations of interval-valued belief functions and
decision rules. Tables 6.9 and 6.10 compare the results for the training

samples and the test samples, respectively. Even though the compounded data
in the ML classification were treated as having Gaussian distributions, the ML

and the MSD methods produced similar results for the training samples. This is

not surprising because the ML method uses conventional additive probabilities

assuming that the knowledge concerning the actual unknown probabilities is

complete, which is reasonable as far as the training samples are concerned.

In the MSD classification using the partially consonant belief function

(PCBF), the information classes were partitioned as {df2, df3, df+lp2} and

{df+os2, hc, fc}. This partition was made on the basis of the classwise

separability measures of the individual sources so that the average separability

between the partitions is maximized.

Comparing the performance of the two belief functions, the consonant

belief function (CBF) was better for the training samples while PCBF was better

for the test samples. It is not known at this point whether CBF or PCBF is better.
As far as the decision rules are concerned, the maximum plausibility (MP) rule

was superior to the other rules, the maximum support (MS) rule and the

maximum average probability (MA) rule. It is also not known in general which
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ML

CBF

PCBF

Table 6.9 Results of ML Classification and MSD Classification
over Training Samples of Anderson River Data.

Decision
Rule

MP

MS

MA

MP

MS

MA

1

82.50

1,4

88.67

89.83

88.67

88.50

88.67

86.83

87.5O

Sources

1,2,4 1 -4

91.67 92.00

92.00 92.50

91.17 91.33

91.00 91.67

91.50 92.17

89.67 91.33

90.17 91.83

1-5

92.83

93.17

92.33

91.67

92.67

91.00

91.67

1-6

93.50

94.33

93.67

93.50

93.83

92.17

92.83

ML

CBF

PCBF

Table 6.10 Results of ML Classification and MSD Classification
over Test Samples of Anderson River Data.

1

74.16

Decision
Rule

MP

MS

MA

MP

MS

MA

1,4

77.77

80.60

78.45

78.21

80.86

78.94

78.49

Sources

1,2,4 1 -4

79.13 78.93

82.39 82.69

81.42 81.67

80.95 82.05

82.76 83.15

81.31 81.64

81.67 82.25

1 -5 1 -6

79.80 81.01

83.O2 84.54

82.24 83.65

81.88 83.16

84.27 85.95

83.05 84.16

83.78 84.44
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rule is the best. Further research is needed to determine whether guidelines
can be devised for selection of the belief function and decision rule.

The MSD classification for all the sources was iteratively performed with
various degrees of source reliability. In this case, the MP rule was used as a

decision rule because it produced the best results in the classification of

multiple data sources with equal reliabilities. Tables 6.11 and 6.12 show the

overall classification results over the training samples and the test samples,

respectively. The results show not only that the classification accuracy may
increase as the reliabilities of the additional data sources are varied but also

that it can be degraded if the additional data sources are discounted too much.

It is also observed that the variations in the accuracy by PCBF are relatively

smaller than those by CBF. The reason is because the width of a partially
consonant interval-valued probability is usually less than the width of a

Table 6.11 Results of MSD Classification over Training Samples of Anderson
River Data with Various Degrees of Source Reliability.

CBF

PCBF

Source Reliability

1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2

1.0

0.8

0.8

0.7

0.8

0.8

0.7

0.6

3

1.0

0.8

0.6

0.5

0.8

0.6

0.5

0.4

4

1.0

0.8

0.8

0.7

0.8

0.8

0.7

0.8

5 6

1.0 1.0

0.8 0.8

0.6 0.6

0.5 0.5

0.4 0.4

1.0 1.0

0.8 0.8

0.6 0.6

0.5 0.5

0.4 0.4

Overall (%)

94.33

95.17

95.83

95.00

93.83

93.83

95.00

95.17

93.67

91.67
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consonant interval-valued probability, which makes PCBF less sensitive to the

changes in source reliability.

Overall, the MSD classification using evidential reasoning was able to

produce higher accuracy than the ML classification. The increase in the

classification accuracy obtained by the MSD classification should be primarily
attributed to the ER method's capability of adequately representing bodies of

statistical evidence by interval-valued probabilities. Furthermore, the MSD

classification was capable of incorporating various degrees of source reliability

into the process by treating the multiple sources separately. It was also

possible in this particular experiment to utilize non-parametric information using
the k-NN method together with parametric information. This is another

advantage of the MSD classification by treating the multiple sources separately.

Table 6.12 Results of MSD Classification over Test Samples of Anderson
River Data with Various Degrees of Source Reliability.

CBF

PCBF

1

1.0

1.0

1.0

1.0

2

1.0

1.0

0.8

0.8

0.7

Source Reliability

0.6

5

1.0

3 4

1.0 1.0

0.8 0.8

0.6 0.8

0.5 0.7

0.4 0.8

1.0 1.0

0.8 0.8

0.6 0.8

0.5 0.7

0.4 0.8

0.8

0.6

0.5

6

1.0

0.8

0.6

0.5

1.0 0.8 0.8 0.8

1.0 0.8 0.6 0.6

1.0 0.7 0.5 0.5

0.4 0.4

Overall (%)

84.54

85.40

85.69

84.25

83.04

85.95

86.09

86.74

85.27

83.21
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6.3. Classification of Single-Source Multispectral Data

In the previous section, the proposed method was applied to the

classification of multisource data obtained by various sensors. The data set

used in this section is 12-band Airborne MSS data whose flightline ID is "CRN

BLT LO FL21" taken on August 21, 1971. Table 6.13 describes the spectral

regions and bands of the 12 input channels comprising the MSS data. The size

of the image is 220 lines by 140 columns, and the image covers an agricultural

area in Indiana. Figure 6.13 is the ground truth map of this area, which is

digitized and geometrically registered with the MSS data imagery.

Although the registration has been made very carefully, the ground truth

map contains geometric registration errors. The error is more noticeable along

the boundaries between different ground types. If the whole area were used for

test, incorrect classifications evaluated on the basis of the ground truth map

would result not only from bad performance of a classifier but also from the

geometric registration error. In order to avoid this confusion, test areas were

chosen. Figure 6.14 shows the test areas on the MSS image (Channels 1, 4,

9). There were 9 information classes for the test, and Table 6.14 lists them with

their actual number of pixels counted from the ground truth map.

This experiment was designed to observe how the proposed method

overcomes the Hughes phenomenon when the number of training samples is

so small. The strategy underlying the method is to decompose the relatively

large body of evidence into smaller, more manageable pieces, to assess

plausibilities based on each piece, and to combine the assessments by a

combination rule.

The set of multiple data sources was formed as shown in Table 6.15 by

dividing the 12-band MSS data based on the global statistical correlation

(Table 6.16) which coincides with the spectral regions. As expected, the

correlation between pairs of bands from different spectral regions (except the

thermal region) are relatively low compared to those within each spectral

region. Even though the thermal band was relatively highly correlated with the

visible bands, we chose to treat it as though it were a distinct source. The

consequence of having done so is apparent in the experimental results.
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Table 6.13 Description of Airborne MSS Data of Indiana
Agricultural Area Data Set.

Spectral

Region

Visible

Near

Infrared

Middle

Infrared

Thermal

Input

Channel

1

2

3

4

5

6

7

8

9

10

11

12

Spectral

Band(#m)

0.46 - 0.49

0.48 - 0.51
0.50 - 0.54

0.52 - 0.57

0.54 - 0.60

0.58 - 0.65

0.61 - 0.70

0.72 - 0.92

1.00- 1.40

1.5O- 1.8O

2.00 - 2.60

9.30 -11.70

Table 6.14 Information Classes in Indiana Agricultural Area Data Set.

Class

Index

1
2

3

4

5

6

7

8

9

Total

Cover

Types
Corn

Soybean
Non-Farm

Oat

Wheat

Sudex

Hay
Wood

Pasture

No. of Test

Samples

3489

6454

593

398

602

936

412

361

115

1 3360

% of

Total

26.11

48.31

4.44

2.98

4.51

7.01

3.08

2.70

0.86

100.0





Douglas Fir 1

Douglas Fir 2

Douglas Fir 3

Douglas Fir 4

DF+Other Species 1

DF+Other Species 2

DF+Other Species 3

DF+Lodgepole Pine I

_h_i..-_.i,_:__:.i'?-i_,?,_.-:_i+.,i_.:ii"..._i_.' E:-

DF+Cedar 1

DF+Cedar 2

DF+Hemlock

Hemlock+Cedar

Lodgepole Pine

,.F___ _-__

Forest Clearing

Figure 6.2 Ground Truth Map of Anderson River Data Set.
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Figure 6.14 Test Areas over A/B MSS (Channel 8) Image
of Indiana Agricultural Area Data.
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For each class, from 15 to 30 samples uniformly distributed over the test

fields were selected for training. First, the ML classification was performed with

various sets of the input bands. Tables 6.17 and 6.18 are the results over the

training samples and the test samples, respectively. The overall classification

accuracy is the percentage ratio of the number of the correctly classified pixels

to the total number of pixels while the average classification accuracy is the

arithmetic mean of the classwise accuracies.

Then the proposed method was applied to subsets of the input channels,

treating them as multiple sources. Tables 6.19 and 6.20 show the results of this

MSD classification over the training samples and the test samples, respectively.

In this case, the consonant belief function and the maximum plausibility rule

were adopted, and the "multiple sources" were assumed equally reliable.

In the ML classification, both the overall and the average accuracies

increased as the number of features was increased for the training samples; but

this was not true for the test samples. In the MSD classification utilizing all input

channels, although both accuracies were below 100% for the training samples,

they were comparable to or higher than the accuracies produced by the ML

method. The results exhibit two interesting features. First, the classification

accuracy for the MSD classifications decreases as the set of bands is more

finely subdivided. This is because more information in inter-channel statistical

correlation is lost as the data set is more finely subdivided. Second, there is a

Table 6.15 Divided Sources of Indiana Agricultural Area Data Set.

Source

Index

1

2a

2b

2c

2d

2

Spectral

Re_ion

Visible

Near Infrared

Middle Infrared

Near & Middle Infrared

Thermal

Infrared

Input

Channels

1 to7

89

1011

8to 11

12

8to 12



Table 6.16 Statistical Correlation Coefficient Matrix of Indiana Agricultural Area Data Set.

1 2 3 4 5 6 7

.839 .909.864 .899 .750

1.000 .893 .696

1.000 .836

.868 .913 .939

.954 .892 .904

.919 .794 .733

1.000 .908 .885

1.000 .936

1.000

1.000 .885

1.000

8 9

-.312 .284

-.355 -.267

-.195 -.174

.047 -.003

-.160 -.140

-.353 -.310

-.445 -.358
J

1.000 .858

1.000

10 11

.413 .556

.371 .577

.442 .547

.491 .489

.448 .548

.393 .577

.409 .607

.350 .076

.517 .254

1.000 .861

1.000

12

.726

.767

.691

.542

.692

.805

.830

-.52O

-.415

.378

.623

1.000

£O
O0



Input

Bands

1 to12

1 to7

8to 12

8to 11

8,9

10,11

12

Table 6.17 Results of ML Classification over Training Samples for Various Sets of Input Bands.

Percent Agreement with Ground Truth Map

Class Index (No. of Pixels per Class)

1 2 3 4 5 6 7 8 9
(30) (30)

lOO.OO lOO.OO
96.67 96.67

100.00 96.67

96.67 76.67

96.67 83.33

100.00 83.33

83.33 86.67

(15) (15) (15) (18) (15) (15) (15)

100.00 100.00 100.00 100.00 100.00 100.00 100.00

100.00 80.00 93.33 83.33 93.33 86.67 93.33

100.00 66.67 100.00 94.44 93.33 60.00 100.00

100.00 46.67 100.00 72.22 93.33 66.67 93.33

86.67 0.00 6.67 77.78 73.33 20.00 86.67

100.00 20.00 20.00 0.00 53.33 40.00 93.33

93.33 0.00 40.00 11.11 0.00 0.00 0.00

Accuracy

Overall

100.00

92.26

91.67

83.33

64.88

61.90

43.45

Average

100.00

91.48

90.12

82.84

59.01

56.67

34.94

_O



Table 6.18 Results of ML Classification over Test Samples for Various Sets of Input Bands.

Input 1

Bands (3489)

1 to 12 99.08

1 to 7 89.45

8 to 12 96.70

8to 11 96.10

8, 9 90.51

10, 11 93.24

12 81.11

Percent Agreement with Ground Truth Map

Class Index (No. of Pixels per Class)

2 3 4 5 6 7 8 9

(6454) (593) (398) (602) (936) (412) (361) (115)

97.92 87.02 42.71 68.94 90.81 19.90 66.20 91.30

72.89 91.57 41.21 80.56 67.09 38.59 43.49 71.30

91.56 99.16 40.70 95.51 71.47 74.21 54.85 97.39

73.27 97.64 33.92 91.86 63.25 72.33 54.29 94.78

82.00 86.68 0.00 10.80 66.35 54.13 15.24 95.65

60.75 93.76 10.80 20.26 4.70 56.55 26.87 95.65

84.13 90.21 0.00 34.72 37.07 0.00 0.00 0.00

Accu racy

Overall

90.97

75.17

89.02

78.92

75.13

62.72

69.99

Average

73.77

66.23

80.18

75.27

55.70

51.40

36.36

..,..&

O
O



Table 6.19 Results of MSD Classification over Training Samples.

Input

Sources

1,2

1,2c, 2d

1,2a,2b,2d

Percent Agreement with Ground Truth Map

Class Index (No. of Pixels per Class)

1 2 3

(30) (30) (15)

100.00 100.00 100.00

100.00 100.00 100.00

100.00 96.67 100.00

4 5 6 7 8 9

(15) (15) (18) (15) (15) (15)

86.67 100.00 94.44 100.00 100.00 100.00

80.00 100.00 94.44 100.00 100.00 100.00

73.33 100.00 88.89 100.00 100.00 93.33

Accuracy

Overall

98.21

97.62

95.24

Average

97.90

97.16

94.69

Table 6.20 Results of MSD Classification over Test Samples.

Input

Sources

1,2

1, 2c, 2d

1,2a,2b,2d

1 2

(3489) (6454)

97.70 95.51

96.85 91.78

96.96 91.74

Percent Agreement with Ground Truth Map

Class Index (No. of Pixels per Class)

3 4 5 6 7 8 9

(593) (398) (602) (936) (412) (361) (115)

96.12 55.78 96.68 84.51 70.87 82.27 97.39

95.62 47.74 96.51 76.39 63.11 82.27 93.91

95.28 38.44 93.36 75.64 57.28 85.04 95.05

Accu racy

I
Overall

93.08

89.97

89.41

Average

86.31

82.69

81.01

O
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considerable increase in the average classification accuracy of the MSD

classification for the test samples as compared to the ML classification

accuracy. It is expected because the MSD classification classifies pixels based

on the assessment of multiple sources instead of a single source. This is a

major advantage of the MSD classification over any single source data

classification. While the ML classification based on the stacked vector

approach combines the features in the raw data level and buries their relative

reliabilities in the statistical correlation information, the MSD classification

combines the multiple groups of the features after assessing the individual

groups with explicit consideration of their relative reliabilities.

In order to demonstrate the Hughes phenomenon, the ML classification

over the test samples was performed with various numbers of the best features

as determined by feature selection using both the J-M distance and the

Transformed Divergence. The result of the feature selection was, from best to

worst: 8, 12, 11, 10, 9, 7, 6, 4, 5, 3, 2, and 1. As shown in Figure 6.15, the ML

method gave the highest accuracies at 8 features (8, 12, 11, 10, 9, 7, 6, 4).

However, the MSD classification based on the proposed method was

able to utilize all features when applied to a "multisource" data set consisting of

two "sources": one having the 8 best features and the other having the

remaining 4 features. The first 4 lines in Table 6.21 are the results of

classification with various degrees of reliability applied to the second source.

Another set of multisource data was formed by dividing the features into

two groups each of which has roughly equally good features. The classification

result from applying the proposed method to this data set is shown in the last

line of Table 6.21. In this particular case, although the dependencies between

sources were ignored, the accuracies were the highest. This is due to the

reinforcing characteristic of Dempster's rule, which means that the combined

body of evidence provides stronger support than any individual body of

evidence.
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Figure 6.15 Results of ML Classification over Test Samples
for Various Numbers of Features

Table 6.21 Results of MSD Classification for Data Set

formed by Feature Selection.

Bands in Source 1

(Source Reliability)

B1211 109764(1.0)

(1.0)

(_.o)

tl .o)
8119652(1.0)

Bands in Source 2

(Source Reliability)

5321 (1.0)

(0.9)

(0.8)

(o.7)
12 107431 (1.0)

Overall

95.27

96.07

96.65

96.81

96.89

Average

89.29

90.42

90.O7

89.96

91.13
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6.4. Classification of HIRIS Data

The High Resolution Imaging Spectrometer(HIRIS) is an Earth Observing

System (EOS) sensor developed for high spatial and high spectral resolution. It

can provide more information in the 0.4 to 2.5/.zm spectral region than any other

earth-observing sensor. Table 6.22 compares some of the attributes of HIRIS

and early Earth satellite observing sensors. [Goetz and Herring (1989)]

The high dimensionality of HIRIS data causes several difficulties in

classifying the data. In addition to the high computational cost of classifying

such data, a huge amount of training samples is necessary in order to have

accurate estimation of the statistical parameters using all 192 channels.

Furthermore, unless these parameters can be accurately estimated, it is even

impossible to use statistical feature selection techniques to reduce the

dimensionality.

In this section, the proposed method is applied to the classification of

HIRIS data by decomposing the data into smaller pieces, i.e., subsets of

Table 6.22 Comparisons of MSS, Thematic Mapper (TM) and HIRIS.

MSS TM HIRIS

No. of Spectral Bands 4 7 192

IFOV(ground) 79m 30/120m 30m

Dynamic Range 6/7 bits 8 bits 12 bits

Swath Width 185km 185km 30km

Data Rate 7.63Mbits/sec 67.4Mbits/sec 300Mbits/sec

Spectral Region 0.5- 1.1/zm

0.45-0.90/_m

1.55-1.75/.zm

2.08-2.35/zm

10.4-12.5/z m

0.4-2.5/_m

Spectral Resolution 0.1-0.3_m 0.6-2.27pm 0.01/zm
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spectral bands. The data set used in this experiment is simulated HIRIS data

obtained by RSSIM [Kerekes and Landgrebe (1989)]. RSSIM is a simulation

tool for the study of multispectral remotely sensed images and associated

system parameters. It creates realistic multispectral images based on detailed

models of the ground surface, the atmosphere, and the sensor. Table 6.23

provides a description of the simulated HIRIS data set.

Figure 6.16 is a visual representation of the global statistical correlation

coefficient matrix of the data. The image is produced by converting the absolute

values of coefficients to gray values between 0 and 255. Based on the

correlation image, the 201 bands were divided into 3 groups in such a way that

intra-correlation is maximized and inter-correlation is minimized. Table 6.24

describes the multisource data set after division. Note that the spectral regions

of the input channels in Source 3 coincide with the water absorption bands.

With 225 training samples (a third of the total samples) for each class, the

ML classification and the multisource data classification using the consonant

belief function and the maximum plausibility decision rule were performed over

the total samples for various sets of the sources, and the results are listed in

Tables 6.25 and 6.26. In the multisource data classification for Source 1 and

Source 2, first the sources were given the equal reliability and then Source 2

was discounted with degree of reliability 0.9 to show the effect of varying

degrees of reliability on the classification accuracy.

Table 6.23 Description of Simulated HIRIS Data Set.

Name Finney County Data Set

Data Type 201-band HIRIS data simulated by RSSIM

Spectral Region 0.4 - 2.4/1m

Spectral Resolution 0.01#m

Image Size 45 lines x 45 columns (2025 samples)

Information Classes Winter Wheat, Summer Fallow, Unknown
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The results of the ML method apparently show effects of the Hughes

phenomenon; the accuracy goes down as the dimensionality of the source

increases while the number of training samples is fixed. In particular, the

accuracy decreases by a considerable amount when all features are used.

Presence of the Hughes phenomenon causes the ML method to be particularly

sensitive to a bad source, Source 3 in this case. Meanwhile, the proposed

MSD classification method always shows robust performance and gives

consistent results.

To explore how to handle a situation in which the training samples were

too limited to permit use of all available features, both methods were run again

with 68 training samples (10% of the total samples), and the results are shown

in Table 6.27. In this case, the features were selected with a uniform spectral

interval from Source 1 and Source 2, excluding the features in Source 3. The

table shows the number of features actually used for the subdivided sources.

Four cases were run, each with a different spectral interval, resulting in a total of

51, 40, 31, and 20 features, respectively. The proposed method performed

better in all four cases than did the ML method.

Table 6.24 Divided Sources of HIRIS Data Set.

Source Index

Source 1

Source 2

Source 3

Input Channels

1-35,107-141,157-201

36 - 95

96 - 106 (1.35- 1.45p.m)

142 - 156 (1.81 - 1.95#m)

No. of Features

115

6O

26
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Table 6.25 Results of ML Classification with 225 Training Samples.

Source Sl S2 $3 $1, $2 All

Classification
75.75

Accuracy (%)
75.60 45.83 74.56 65.14

Table 6.26 Results of Multisource Data Classification
with 225 Training Samples.

Reliability of

$1

1.0

1.0

1.0

$2

1.0

1.0

0.9

$3

1.0

not used

notused

Classification

Accuracy (%)

77.63

77.83

78.32

Table 6.27 Results of Classifications with 68 Training Samples.

Sources

# Features

ML

$1 $2

33 18

77.43

Classification Accuracy (%)

$1 $2

27 13

82.40

84.10

$1 $2

21 10

82.86

85.04

$1 $2

14 6

81.82

81.90MSDC 82.22
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6.5. Discussion

In this chapter, the Evidential Reasoning (ER) multisource data

classification method presented in Chapters 3, 4, and 5 has been applied to the

ground-cover classification of various multisource data sets. Once it is

determined which belief function and decision rule will be used, the

implementation of the method is as easy as implementing a typical ML method.

The first experiment, with the multisource data set consisting of 3 multi-

channel data sources and 3 topographic data sources, was intended to assess

the ability of the ER method in capturing and utilizing the information obtained

from the topographic data sources as well as the multispectral data sources. In

this particular experiment, some of the classes could not be assumed to be

normally distributed in the topographic data. Thus, in the MSD classification

based on the ER method, the nonparametric Nearest Neighbor method was

adopted to compute the likelihood functions of test samples, which were then

used to construct the IV belief functions for the bodies of evidence provided by

the topographic data sources. By treating the multiple data sources separately,

the proposed method was able not only to utilize nonparametric information

together with parametric information but also to incorporate various degrees of

source reliability into the process. The method provides more than one choice

for representation of statistical evidence and a decision rule; these choices give

a lot of flexibility to the multisource data analysis. At this point in the research it

is not known exactly which choices should be made in general; the choices

must depend on our knowledge concerning the context of the specific problem,

such as the hierarchical structure of information classes and the amount and

reliability of available information.

The ER method was also applied to the classification of two single-

source data sets: 12-band A/B MSS data, and 201-band simulated HIRIS data.

Both experiments were designed to observe how effectively the proposed

method utilizes the available features and overcomes the Hughes phenomenon

when the number of training samples is small. From single-source data a

multisource data set was formed by decomposing the high-dimensional data

into smaller and more manageable pieces based on the global statistical

correlation information.
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In the experimental results for the 12-band A/B MSS data, two

observations were made: (1) the classification accuracy of the MSD

classifications decreased as the set of bands was more finely subdivided, and

(2) the average classification accuracy of the MSD classification increased

significantly compared to the ML classification accuracy. According to the first
observation, inter-channel statistical correlation must be kept within the

subdivided sources (consistent with the independence assumption of

Dempster's combination rule). Similar results were observed when the MSD
classification was performed for the set of features subdivided based on feature

selection. Although dependencies between sources were ignored, the

classification accuracy was increased due to the reinforcing characteristic of

Dempster's rule.

The experimental results for the 201-band simulated HIRIS data showed
that the MSD classification provided robust and consistent performance despite

the existence of an inconsistent source when training samples were very

limited. The information obtained from an inadequate number of training

samples is considered to be inexact and incomplete. The results have
demonstrated the ability of the ER method to capture uncertain information

based on inexact and incomplete bodies of evidence, and consequently to

utilize features as effectively as possible.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

7.1 Conclusions

The problem of drawing inferences using subjective probability

measures is not a trivial one, especially when it involves multiple information

sources associated with various degrees of relative reliability. In this report we

have investigated how interval-valued probabilities can be used to represent

and integrate evidential information obtained from various data sources.

IV probability is a generalization of the conventional point-valued

probability. It has been known as a more adequate scheme than the

conventional additive probabilities for representing partial information provided

by inexact and incomplete sources. Chapter 2 reviewed various systems of IV

probabilities and introduced an axiomatic approach to IV probabilities. In the

axiomatic approach the upper and the lower probabilities are given by a pair of

set-theoretic functions.

One of the basic problems in applying IV probabilities to a real-world

problem is how to infer the upper and the lower probability functions given a

body of evidence. Chapter 3 investigated formal methods of constructing IV

probability functions when the given body of evidence is based on the

outcomes of statistical experiments governed by a probability model. This

report has mainly focused on the two IV belief functions, the consonant and the

partially consonant belief functions, which are based on the Likelihood

Principle. Even though they require certain assumptions which are not difficult

to satisfy in practice, they have mathematically simple and readily usable

formulas. In order to include the relative reliabilities of sources in a multisource

data analysis, the attempts to represent quantitatively the degree of reliability by

the average Jeffries-Matusita distance, the average Transformed Divergence,
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and the average measures of conflict between pairs of sources were made.

These measures were used to rank the multiple sources according to the

relative reliabilities of the sources.

In the analysis of multiple data sources, a combination rule is an

essential tool in order to base inferences and decisions on all available

information. Chapter 4 formally stated desirable properties of combination rules

and investigated the inferencing mechanisms of the subjective Bayesian

updating rules and Dempster's rule for combining multiple bodies of evidence.

It was also noted that Dempster's rule is a generalized form of Bayesian

inference, which is characteristically reinforcing and robust to small variations in

probability measures to be combined. The robustness of Dempster's rule was

analyzed in the aspect of its differential behavior according to slight changes of

initial belief measures.

Chapter 5 presented an account of basic elements in the decision theory

for pattern recognition based on IV probabilities and developed the absolute

rule and the Bayes-like decision rule for evidential intervals on the basis of the

general interval-valued expectation. A problem with these rules is that there

may happen ambiguous situations where decisions cannot be made. The

minimum average expected loss rule was proposed to resolve such ambiguous

situations. Further, the minimum upper expected loss rule and the minimum

lower expected loss rule were proposed as alternatives to the previous two

rules.

Overall concepts of interval-valued probabilities have been implemented

and evaluated as a new method for classification of multisource data in remote

sensing. As described in Chapter 6, the proposed method was applied to three

separate sets of multisource data, one consisting of three multi-channel data

sources and three topographic data sources, and two consisting of single-

source multispectral data. The purpose of applying the method to the single-

source data sets was to utilize as many features as effectively as possible

(when training samples are limited) by decomposing a large number of

channels into smaller and more manageable subsets based on the global

statistical correlation.

In the method each data source is considered as a body of evidence
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providing partial information. When the body of evidence is represented by IV

probabilities, the width of the interval represents the uncertainty associated with

the corresponding source. The method combines the individual bodies of
evidence into the total body of evidence. By treating the data sources

separately, the method is not only able to utilize both parametric and

nonparametric information but also able to incorporate various degrees of

source reliability in the multisource data analysis.

The experimental results showed that compared to the conventional ML

classification, the proposed method gave higher and more robust classification

accuracies for test samples even when a far less reliable source was included

in the data set. The increase in average classification accuracy was

noteworthy. The results also showed that the classification accuracies could be

increased by varying the degree of reliability assigned to each source as well

as by choosing an appropriate decision rule.

The most important feature of the method is the capability of plausible

reasoning under uncertainty in pattern recognition, especially where multiple
data sources are not 100% reliable or provide conflicting information. The

method of classification for multisource data based on IV probabilities can also

be used to good advantage when there are only small numbers of training

samples and reliable estimation of statistical information requires dividing the

high-dimensional data into lower-dimensional subsets.

7.2 Suggestions for Further Research

The Evidential Reasoning method developed in this work could be

further improved in the following respects:

(1) Computational complexity: It is apparent that the processing time will

increase as the number of sources increases. Furthermore, since Dempster's

rule computes the IV probability of a subset Ac _ as the sum of the basic

probability assignments of A and all the subsets of A, the computational

complexity grows exponentially with the number of elements in _. A possible

way to reduce the computation is to restrict the number of focal elements to be

considered. In a remote sensing context, this is possible by designing the
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classes hierarchically.

(2) Generalization of the minimum average loss rule: Although the minimum

upper expected loss rule (maximum plausibility rule) produced the best results

in the experiments, it is considered to be due to the belief functions used. In

general, the minimum average loss rule is considered to be more reliable than

any other rule because it includes both the upper and the lower probabilities.
This rule may be generalized by considering the IV expected loss as a convex
set of measures.
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